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Frankencoin

Abstract

We present an open architecture to create a decentralized, fully collateralized stablecoin
that does not rely on external price oracles. Collateralization is maintained through a novel
liquidation mechanism that is based on auctions and flexible with regards to the collateral used.
The long-term fundamental value that mirrors that of the reference currency is obtained via
collateralization and trust in the stakeholders to align the return of holding Frankencoin with
that of the Swiss franc. Market forces, rather than an oracle-based conversion mechanism,
maintain the short term peg. We assess the risks of the system through the lens of a bank
regulator, using historical data. The name Frankencoin is both a reference to our initial reference
currency, the Swiss franc, as well as to the system’s self-governing nature.
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1 Introduction

We start from the use-case of a Swiss franc Lombard loan, collateralized with tokens such as crypto-
currencies or tokenized securities. The borrower deposits collateral into the system and thereby
gains the possibility to mint a token, the “Frankencoin” ZCHF, that is pegged to the Swiss franc.
If the value of the borrower’s collateral falls below a certain threshold, the loan can be liquidated
and the borrower incurs a haircut. If the value of the collateral falls below the loan value before
the liquidation ends, the loss eats into the system’s capital reserve. Implementing this system in a
fully decentralized way on the blockchain leads us to our main contributions:

– A modular approach that allows anyone to propose new minting mechanisms in the form of a
"mint plugin", resulting in a diversified loan collateral mix

– Mint plugins allow for oracle-free collateralized loans, based on a auction-based liquidation
mechanism that is suitable for both, liquid and illiquid collateral

– Capital requirements inspired by traditional banking rules and clearing house practices

In comparison to other decentralized stablecoins, the Frankencoin stands out with its simplicity
and versatility, which is achieved by having a basic but extensible setup that relies on the overarch-
ing economic incentives of the system participants instead of strictly enforcing a narrow peg with
technical means.

1.1 Existing Systems

This section describes existing stablecoins and how they solve the challenge of having a stable value
compared to a reference currency. In comparison to the Frankencoin, most stablecoins are more
directly concerned about steering the short-term peg to the reference currency at small deviation,
whereas the Frankencoin aims at creating a credible fundamental value in the long term and relies
more on market forces to keep the exchange rate close to the fundamental value in the short term.

1.1.1 Stabilization Methods

The largest two stablecoins, the Tether (USDT) and the USD Coin (USDC) are based on the
promise of an issuer to always sell and repurchase them at the price of the reference currency,
thereby enforcing a 1:1 peg for as long as the issuer is solvent.1 There is also a Crypto Franc
(XCHF) tracking the Swiss franc using this approach.2 In the background, the issuer can apply
any stabilization mechanism the law allows. Currently, regulators are prohibitively restrictive when
it comes to using cryptocurrencies as a collateral. Creators of decentralized stablecoins can be
much more creative as their coins usually fall outside the scope of banking regulation, at least for
now. At first sight, this might be seen as unfair, but there are also fundamental reasons why a fully
transparent blockchain-based stablecoin can be inherently more stable than an opaque issuer-backed
stablecoin, justifying less strict regulation.

1https://tether.to/ and https://www.circle.com/en/usdc
2https://www.bitcoinsuisse.com/cryptofranc

1



At an initial version of this paper, the third largest stablecoin was the TerraUSD (UST), be-
longing to the class of algorithmic stablecoins.3 The TerraUSD was built on the Terra blockchain
with a built-in oracle at the protocol level. The blockchain validators had to provide quotes for the
supported currencies and were punished if they failed to do so or if their quotes were too far from
the quotes of the other validators. The basis currency is the Luna, and the stabilization mechanism
was based on a mechanism to print Luna tokens to buy TerraUSD in case it falls below the price of
the reference currency, and to do the opposite if the price of the TerraUSD is too high. The stability
of the TerraUSD rested on the assumption that the fundamental value of the Luna token does not
fall too fast when more have to be printed to stabilize the system. Similarly to the currency of a
country, this works well for as long as the economy around the Luna token, namely everything that
happens on the Luna blockchain, is strong enough to support its value. However, it can collapse
quite fast once the market loses trust in its stability, as we have seen with the spectacular collapse
in May, 2022. Another similarly designed token, the Iron Coin, faced the same fate. The Iron coin
that was supposed to track the USD dollar was supposed to be stabilized by printing Titanium
tokens whenever needed. For a critical perspective on algorithmic stablecoins, written before the
crash of Luna, see for example Clements (2021).

An additional class of stablecoins are based on a blockchain-based collateral, known example
being the DAI and the Liquity USD (LUSD).4 Typically they let anyone deposit a collateral and
then mint a certain quantity of the stablecoin. If the value of the collateral falls below a critical
threshold, the deposit is liquidated and the proceeds are used to repay the minted coins. This is the
principle that we apply to the Frankencoin, with the major difference being that the Frankencoin
is much more adaptable to different collateral types, as it introduces a liquidation mechanism that
does not rely on the presence of an oracle.

1.1.2 Problems with Oracles

A blockchain oracle is a service that connects blockchain-external data feeds, such as e.g., price
data or temperature data, with smart contracts. When a decentralized stablecoins relies on a price
oracle, this introduces an external dependency and potentially leads to centralization. For example,
when analyzing the currently most popular oracle in the Ethereum system, Chainlink, one finds that
its administrators could collude to manipulate prices. While the price feeds offered by Chainlink
are the median of often more than a dozen independent oracles, configuring the feed only requires
the signatures of three of its administrators, enabling them to potentially manipulate prices if they
would like to do so.5 But even if the administration was more decentralized, one would still have
to trust the independent price sources to not collude. History shows that sometimes even the most
reputable institutions cannot resist doing some price manipulation when the incentive to do so is
big enough. One famous example is the LIBOR scandal, see for example Wheatley (2012).

A more robust type of oracles is exchange data based on actual trades. Here, the challenge is
to find an exchange that can not only be relied on to have high liquidity today, but also for the full
life-time of the Frankencoin or the respective bridge contract. Building a robust mint plugin based
on the price-feed of a decentralized exchange would require a fallback mechanism in case liquidity

3https://www.terra.money/
4https://makerdao.com/en/ and https://www.liquity.org/
5For example, the Chainlink price feed for the ETH / USD price pair found at data.chain.link/ethereum/

mainnet/crypto-usd/eth-usd is based on smart contract 0x5f4ec3df9cbd43714fe2740f5e3616155c5b8419, which is
currently controlled by a multi-signature contract that requires 3 out of 19 signers to approve transactions.
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on that exchange falls below an acceptable level. This is easier said than done as trading volumes
can be manipulated. That is why in this article, we prefer other approaches for price discovery.

1.2 Structure of the Paper

The paper is structured as follows. In Section 2, the reader is introduced to the cornerstone of the
paper, namely a method for Oracle-free collateralized minting based on auctions. We describe how
minters can mint their own Frankencoins in exchange for plugin-specific collateral. In Section 3,
we introduce a reserve pool to address the residual risk of the system not being able to liquidate
collateral at a price high enough to repay an open position. This pool is capitalized by the minters
as well as voluntary contributors seeking a return on their Frankencoin holdings. With these tools,
it is possible to create a system that can withstand adverse market events. Next, we turn our
attention to how the peg to the Swiss franc is maintained in Section 4. This completes the overall
design of the Frankencoin, allowing us to move our attention to the real-world implementation in
Section 5 and concluding with an extensive risk analysis in Section 6, in which we apply the typical
capital requirements found in banking regulation to the system.

2 Oracle-free Collateralized Minting

This section specifies and analyzes the proposed oracle-free collateralized minting plugin from a
game-theoretical perspective. There are two relevant games to be analyzed. The first is the initial-
ization game between the minter and the system when proposing to mint new Frankencoins against
a collateral. The second is the liquidation game to ensure the stability of the resulting collateralized
negative Frankencoin position. The latter game has four participants, namely the minter, a chal-
lenger, various bidders, and the system, whereas the challenger and the bidders are the actors that
take relevant decisions. For simplicity, market prices are assumed to be constant for the duration
of the game.

2.1 Definitions

Letter Name Description

M minter Deposits a collateral of CM units of an asset and mints ZM Frankencoins.
C challenger Challenges the minter offering CC units of the collateral asset for sale.
B bidder Bids ZB Frankencoins for CC units of the collateral asset.
S system Vetoes plugins. Bears the liquidation profits and risks. Pays reward.

Table 1: Actors. The four relevant actors in the two discussed games.

2.2 Initialization Game

The initialization game is about initiating a new collateralized Frankencoin position.

Specification: Two actors, a minter M and the system S take part in this sequential game with
two rounds as depicted in Figure 1. In the first round, the minter chooses a strategy (ZM , CM ) ∈
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Letter Name Description

CM ∈ R>0 minter collateral Amount of the collateral provided by the minter.
ZM ∈ R>0 minted currency Frankencoins (ZCHF) created by the minter.
CC ∈ (0, CM ] challenger collateral Collateral asset quantity offered by the challenger.
Z̃M = ZM

CC
CM

challenged part The challenged part when CC < CM .
ZB ∈ R>0 bid Frankencoins offered by the bidder for CC .
DS ∈ noop, veto governance The system’s approval decision.

Table 2: Strategies. The decision variables chosen by the actors during the discussed games.

Letter Name Description

l = 1
1+h loan-to-value The loan-to-value threshold above which the collateral is liquidated.

p > 0 price The market price of the collateral in Frankencoin.
0 < k < h reward Fraction of the challenged position that is paid to successful chal-

lengers as a reward.
v > 0 value The utility value the minter derives from the minting.

Table 3: Parameters. The relevant parameters and their meaning.

R2
>0. The variable CM is the amount of the collateral to deposit and the variable ZM is the amount

of the currency to be minted. In the second round, the system chooses a strategy DS ∈ {noop, veto},
whereas noop is a common abbreviation for ’no operation’ and represents the choice of doing nothing.
The other possibility is to veto the proposal. It is assumed that the minter has a desire to obtain
a Frankencoin position, represented by a positive utility v. If that utility was zero, no game would
take place at all.

Theorem 1 (Valid Initialization). Assuming the liquidation game always ends with positions being
well-collateralized (Theorem 2), the initialization game will never end with a position being opened
that is not well-collateralized, whereas well-collateralized is defined as ZM ≤ lpCM .

Proof. Theorem 1 can be shown by analyzing the initialization game as depicted in Figure 1.

Case 1 (left path, ZM ≤ lpCM ). The collateralization is sufficient to prevent a liquidation. The
system S is indifferent between veto or noop, as there is no loss or gain for either decision. The
resulting position, if any, is well collateralized.

Case 2 (middle path, ZM > lpCM and ZM ≤ pCM/(1 + k)). The collateralization is not sufficient
and would result in a liquidation, and the collateralization is sufficient to pay the challenger fee k.
With a veto, the system S is not making any gain or loss. If the system S chooses noop, a liquidation
game results in a gain of 1

1+kpCM −ZM ≥ 0. Hence the system chooses noop, and with Theorem 2,
the resulting position (if any) is well collateralized.

Case 3 (right path, ZM > lpCM and ZM > pCM/(1 + k)). The collateralization is not sufficient
and would result in a liquidation, and the collateralization is not sufficient to pay the challenger
fee k. With a veto, the system S is not making any gain or loss. If the system S chooses noop, a
liquidation game results in a loss of 1

1+kpCM −ZM < 0. Hence the system chooses to veto, so there
is no resulting position.

To conclude, the game results in either no position, or a well collateralized position. ■
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1+kpCM − ZM < 0
)(0, 0)

S
veto

(0, 0)

noop

S
veto
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ZM − 1

1+kpCM ≤ 0 , 1
1+kpCM − ZM ≥ 0

)
Figure 1: Extensive form graph of the initialization game between the minter (M) and the system (S), with
the preferred choices in bold. The first element in the round brackets is the minter’s payoff and the second
element that of the system S. A rational minter M goes for the leftmost path where they can successfully
mint the desired number of Frankencoins and derive a value v from the obtained liquidity. In the other two
cases, the minter is either liquidated in the subsequent liquidation game and suffers a loss from that, or the
position is so undercollateralized that it is immediately vetoed by the system to avert a loss.

In practice, casting a veto requires marginally more effort than doing nothing (noop), and
proposing a new collateralized Frankencoin position requires more effort than vetoing one. Revisiting
the proof above, we see that these effort relations are beneficial for the game (e.g., in case 1, the
system would choose noop, instead of being indifferent). However, we do not require these relations
for Theorem 1 to hold and therefore do not formalize these efforts for simplicity.

Proposition 1 (No undercollateralized minting). A rational minter does not initiate a new position
that is undercollateralized.

Proof. In the proof of Theorem 1, we saw that in case 3, noop will never be chosen, and in case 2,
noop is always chosen, finally in case 1, either path is chosen. Hence, for all viable nodes, we see
that case 1 is the most profitable for the minter, the other choices result in either a utility of zero,
or a loss. ■

2.3 Liquidation Game

The purpose of the liquidation game is to provide a mechanism to prevent an undercollateralization
of a mint plugin by liquidating the collateral before its price falls below the value of the Frankencoins
it has been used to print. It is designed such that it makes sense for challengers to start a round
of the liquidation game as soon as the loan-to-value ratio exceeds the loan-to-value threshold, i.e.
the value of the collateral has fallen so low such that lpCM < ZM with p denoting the market price
of the collateral at the point in time at which the liquidation game takes place. For simplicity, the
market price of the collateral is assumed to be constant for the duration of the game.
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2.3.1 Base Scenario

The liquidation game consists of two stages: a decision to challenge the collateralization and sub-
sequent competitive decisions to bid on the challenge. Anyone can start a challenge and thereby
become the challenger. Also, anyone can place a bid. In the base scenario, it is assumed that the
minter, challenger, bidder and system are distinct persons. In subsequent sections, we show that
the game still works as intended if identities overlap, for example when the bidder and the minter
are the same person.

Specification: Two groups of actors, the challenger and a group of competitive bidders take
place in this sequential game as depicted in Figure 4. The minter is not allowed to repay the
outstanding balance and reclaim the collateral for as long as a challenge is pending and is therefore
no actor in this game, neither is the system. The liquidation game starts with the challenger’s
decision to start a challenge with quantity CC ∈ [0, CM ].6 We assume there is enough collateral
in existence for all positions to be challenged, and the challenger is indifferent between holding a
given amount of Frankencoin, or an equal value in collateral asset. The bidders’ set of available
strategies is embodied by choosing the bid amount for the challenged collateral. The bidding process
with multiple rounds of bidding by the competing bidders ends either after a fixed duration τ , or
if the currently highest bid fulfills the collateral requirement, whichever occurs earlier. The highest
bid at the end of the bidding process is ZB. Challenges that show the position to not be well-
collateralized are considered successful challenges. If the challenge is successful, the best bidder
receives the minter’s collateral Cc, the challenger is given a reward of kZ̃M , and the rest of the bid
is used to erase the outstanding position Z̃M , with the remaining (potentially negative) amount of
ZB− (1+k)Z̃M going to the Frankencoin reserves. If the challenge is not successful, the best bidder
receives the challenger’s collateral Cc, and the challenger receives the bid amount ZB.

Hence, depending on how high the bid is, the bidders are either bidding for the quantity CC

of the collateral asset provided by the challenger, or for a same quantity CC of the collateral asset
taken out of the minter’s collateral deposit. This ensures that a malicious challenger cannot force
the minter to sell the collateral. Once the highest bid reaches a level high enough to show that the
collateral is valuable enough for the position to be well-collateralized, i.e. ZB = (1+h)ZM

CM
CC = Z̃M ,

the challenge is averted and ended immediately. Table 4 presents the payoffs. The allocation of the
highest bid as implied by the payoff table is shown in Figure 3.

Actor Payoff if challenge successful Payoff if challenge averted

B bidder pCC − ZB pCC − ZB

C challenger kZ̃M −pCC + ZB

M minter Z̃M − pCC 0

S system ZB − kZ̃M − Z̃M 0

Table 4: Payoff table. The payoff for each actor in the liquidation game with Z̃M = ZM
CC

CM
representing

the minted amount adjusted to the size of the challenge. See also Figure 3.

Theorem 2 (Successful Liquidation). Given rational actors, the challenged part of the collateral is
liquidated if and only if ZM > lpCM , where p is the market price.

6The quantity of the asset CC used for the challenge is of secondary importance and for most purposes one can
simply assume CC = CM .
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C chooses CC

(0, 0, 0, 0)

CC = 0

B chooses ZB

CC > 0

ZB < (1 + h) Z̃M ZB ≥ (1 + h) Z̃M

Challenge averted
(see payoff table)

Challenge successful
(see payoff table)

Figure 2: Extensive form graph of the liquidation game. It only makes sense to start a challenge if the
highest bid can be expected to imply a violation of the loan-to-value threshold, i.e. if the market price of
the collateral is low enough.

Proof. Being rational, the bidders will never bid higher than the market value, i.e., ZB ≤ pCC .
Considering that the challenge ends immediately once ZB ≥ (1+ h)Z̃M is reached, the bidders also
have no incentive to bid above that trigger point. Under perfect competition, the highest bid is:

ZB = min(pCC , (1 + h)Z̃M ) (1)

From that point, all that is left to prove the theorem is connecting the dots.

Case 1 (Successful challenge). The challenge is defined as successful when ZB < (1 + h)Z̃M . In
this case, the highest bid must be ZB = pCC , allowing us to restate the inequality as:

ZB = pCC < (1 + h)Z̃M =
1

l
ZM

CC

CM

from which immediately follows ZM > lpCM .

Case 2 (Averted challenge). In case of an averted challenge, i.e. ZB ≥ (1 + h)Z̃M , the highest bid
must be ZB = (1 + h)Z̃M ≤ pCC as the challenge is immediately ended at that point. Plugging the
definitions of l and Z̃M leads us directly to ZM ≤ lpCM .

So in both cases, the theorem holds. ■

Foreseeing the bidders’ strategy, the challenger can assume the challenge to succeed whenever
the value of the collateral has fallen low enough to make the position not well-collateralized any
more, i.e., whenever:

p < (1 + h)
Z̃M

CC
= (1 + h)

ZM

CM
(2)
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challenger reward

system gain or loss

highest bid
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Figure 3: Bid allocation after a successful challenge. How the winning bid ZB (red) is allocated to
the minter (green), challenger (orange), and the system (blue) in the case of a successful challenge. Given an
efficient market, the winning bid is equivalent to the market value of the collateral. The four lines sum up to
zero. It is pivotal for the system to ensure that challenges happen before the price has fallen too low in order
to avoid losses. There is no way to take away more from the minter than the collateral. In the extreme case
of the collateral having become worthless, the system has no choice but to forgive the outstanding amount
and to pay for the challenger reward out of its reserves.

Proposition 2. It is only rational to start a challenge as long as inequality (2) is fulfilled, i.e. if the
market price is so low that the value of the collateral does not suffice anymore to reach the desired
loan-to-value ratio.

Proof. If (2) holds, the challenger can earn payoff kZ̃M . If (2) does not hold, a challenger would
make a loss of ZB − pCC = (1 + h)Z̃M − pCC ≤ 0. ■

2.3.2 Overlapping Identities Scenario

A crucial assumption of the base scenario was that all actors are distinct. However, in practice, the
bidder and the minter might be the same person, or there might be side-payments between them to
tilt the incentives. This section shows how theorem 2 is affected and how it can be preserved when
the bidder does not act on its own.

Proposition 3 (The challenger as bidder). Theorem 2 still holds when allowing the challenger to
be the bidder.

This can be shown by again looking at both cases, the case of the successful and the case of the
averted challenge. In case of the averted challenge, the cumulative payoff of the challenger and the
bidder is zero:

pCC − ZB − pCC + ZB = 0
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This implies that a challenger can cancel a challenge at any time without incurring any costs,
simply by bidding high enough. Still, as long as the position is not well-collateralized, the challenger
gets a higher payoff by not cancelling the challenge, namely:

pCC − ZB + kZ̃M > 0

Therefore, a bidding challenger will not behave any differently than any other bidder and theorem
2 is preserved.

Proposition 4 (The minter as bidder). Theorem 2 is violated when allowing the minter to be the
bidder in an isolated game, but still holds when allowing the challenger to repeat the game under the
same market price p.

This is the most interesting proposition of the three. The minter might want to avert a looming
liquidation by placing bids above the market price, i.e. ZB > pCC . For the minter, bidding above
the market price to avert a challenge yields a loss of pCC − ZB < 0. However, this loss might still
be the better option than taking the liquidation loss of Z̃M −pCC < 0. So in such a case, a rational
minter would bid above the market price, violating theorem 2!

To solve this violation, one needs to expand the scope from a one-shot game to a repeated game.
When the minter averts the challenge by bidding higher than the market price, the challenger makes
a profit when selling CC to the bidder. If the challenger is given the opportunity to restock the
collateral asset CC at market price p and then repeat the game before the minter gets a chance to
close the open position, theorem 2 still holds. In that case, the challenger can threaten to infinitely
repeat the game, causing an infinite loss to the minter. Therefore, a rational minter would prefer to
not interfere with the bidding and take the smaller than infinite loss of the liquidation, which can
only be repeated as long as there is collateral left to liquidate.

Proposition 5 (The system as bidder). Theorem 2 is violated when allowing the system to be the
bidder in an isolated game, but still holds when allowing the challenger to repeat the game under the
same market price p.

In case of the market price being high enough that other bidders already avert the challenge,
the incentive of the system acting as bidder are identical to that of a bidder alone, as the payoff for
the system in that case is zero.

In case of a successful challenge, the system is indifferent with regards to the size of the bid
when acting as a bidder, as ZB drops out of the equation for the cumulative payoff:

pCC − ZB + ZB − kZ̃M − Z̃M = pCC − kZ̃M − Z̃M

This means that the system has no incentive to move the bid as long as we stay within the range
of bids that would imply a successful challenge. However, since the overall payoff for the system
in case of a successful challenge can be negative, the system might have an incentive to overbid in
order to avert the challenge. This is similar to the problem of the minter being the bidder and the
solution of looking at a repeated game is also applicable here.
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2.4 Example

As an example, let us say the minter minted 1,000 ZCHF providing 10 ABC tokens as collateral,
with h = 0.2 and k = 0.02. Then, a challenge was started with 4 ABC tokens, and the highest
bid was 440 ZCHF. The required collateral value would have been (1 + h)400 = 480 ZCHF, so
the challenge is successful since 440 < 480. The bidder gets 4 ABC tokens from the minter. The
minter’s position is reduced to 600 ZCHF and 6 ABC tokens. From the 440 ZCHF bid, 400 ZCHF
are burned, k ∗ 400 = 8 ZCHF are given to the challenger as a reward, and the remaining 32 ZCHF
flow into the reserve.

Figure 4 illustrates this auction mechanism graphically.

undercollateralized

Position is liquidated

100% (1+h)0

k

Collateral value / 
ZCHF loan notional

Figure 4: Auction. Any participant can challenge a loan position consisting of the ZCHF loan and the
deposited collateral. The challenger deposits collateral of the size of the loan. Auction participants bid for
the collateral (here BTC) by depositing ZCHF. If the best bid price in ZCHF is above (1+h) times the
notional ZCHF challenged, the challenger receives the best bidder’s ZCHF and the bidder the challenger’s
collateral (green zone). If the best bid price is below (1+h), the borrower loses their collateral (position is
liquidated). In this case the challenger gets back their collateral and earns a fee of k times the challenged
loan amount. The bidder gets the collateral deposited by the borrower. The ZCHF posted by the bidder
are used to pay a reward k to the challenger, (1 + h − k) times the challenged loan amount go to the
contributor pool, and an amount equal to the loan amount is burned. If the ZCHF are not sufficient to burn
an amount equal to the loan amount after paying k, the capital contributors’ ZCHF of this amount of ZCHF
is burnt/the reserve requirement is increased. Hence the unshaded area in the center is where contributors
earn liquidation rewards, the area to the left is costly for contributors.

3 Reserve Pool

For clearing houses, each clearing member is required to contribute to a default fund based on the
risk they bring to the clearing house and on the utilization of the clearing services. In the same vein,
borrowers in the Frankencoin system contribute to the system reserves. This is done by adding a
slight twist to the collateralized minting mechanism from the previous section.

3.1 Pool Specification

Frankencoin has a reserve pool that received all the excess proceeds from liquidations and has
to cover the loss if these proceeds are negative. Anyone can contribute to the reserve, getting a
proportional share in the pool in return. The assigned pool share S(kc) from contributing capital
kc to the pool is:
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S(kc) =
kc

Kt + kc
=

kc
Kt+1

whereas Kt denotes the capital already in the pool before the contribution. Likewise, the capital
Kr(sk) returned from redeeming pool share sk at time T is:

κT (sk) =
sk∑
i si

KT .

Whether the returned capital κT (sk) is lower or higher than the paid-in capital kc depends
on the inflows and outflows of the reserves that happened in the period due to liquidations. Other
contributors adding or removing capital does not have an impact. The amount of capital attributable
to a share unit is invariant as others contribute or redeem capital.

The incentive for contributing to the reserve pool is the expectation that more money flows in
than out when liquidations happen. Furthermore, pool contributors get the power to participate
in the governance, i.e., they can act on behalf of the system and veto new mint plugins if the have
enough shares.

3.2 Compulsory Minter Contribution

In order to make the minters contribute to the stability of the overall system, the minting mechanism
is adjusted. When minting, an additional hZM ZCHF are minted on top of the already minted ZM .
These additional funds are contributed to the reserve pool with a pool share of sM = S(hZM )
being assigned to the minter in return. This increases the stability of the system without binding
additional capital, but by imposing some additional risk onto the minters.

With this adjustment, the amount of ZCHF needed to pay back the loan depends on the
value of the pool share sM . That is, instead of having to repay ZM , the minter will have to repay
ZM + hZM − κT (sM ). Depending on the success of the system, this might be above or below the
original loan ZM .

When a position is successfully challenged, the challenged proportion of the pool shares s̃M =
sM

CC
CM

are redeemed and added to the liquidation proceeds, but an additional hZ̃M burnt to close
also that part of the position. This leads to a new payoff for the minter and the system in case of
a liquidation, as shown in the adjusted payoff Table 5.

Actor Payoff if challenge successful Payoff if challenge averted

B bidder pCC − ZB pCC − ZB

C challenger kZ̃M −pCC + ZB

M minter (1 + h)Z̃M − pCC − κT (s̃M ) 0

S system ZB − (1 + h+ k)ZM + κT (s̃M ) 0

Table 5: Adjusted payoff table. The payoff for each actor in the liquidation game including compulsory
reserve contributions, affecting the minter and the system, but not the outcome of the liquidation game.
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In case of a normal repayment of the loan, all the additional value and risk of having participated
in the reserve goes to the minter. In case of a successful challenge, that additional value and risk
is carried by the system that collectively represents the other minters and the contributors. If the
value of the pool shares has not changed since the minter opened the position, the payoff is identical
to the situation without compulsory minter contributions.

4 Fundamental Value

We now address the conditions under which the peg to the Swiss franc should hold. The fundamental
value of the Frankencoin comes from a combination of three elements: first, it is necessary to have
enough collateral such that in the long run, each Frankencoin is worth at least one Swiss franc
as the minters need to buy them if they want to get their collateral back. Second, contributing
Frankencoin to the reserve should come with a yield such that the established fundamental value at
an unknown point in the future translates into the same fundamental value today. Third, one needs
some assurance for the minters to ensure that they cannot be made subject to a short-squeeze.

4.1 Sufficient Backing

On the supply side of the Frankencoin, contributors should not allow any mintings that create a
risk of the value of all collateral falling below the Frankencoins in circulation. Assuming that each
Frankencoin is always backed with at least one Swiss franc worth of collateral, the Frankencoin is
fundamentally sound and one can assume that the minters are willing to pay at least one Swiss
franc per Frankencoin at the point in time when they want to get their collateral back again.

4.2 Comparable Yield

On the demand side, we approach the valuation of the Frankencoin from the perspective of a
perpetual bond. A perpetual bond, or consol, is a bond with coupon payments but no redemption
date, see, e.g., Jorion et al. (2010). We price this perpetual along the lines of Jarrow and Turnbull
(2000), by discounting the interest payments on a risky term structure. Let’s assume that interest
payments happen at discrete time-steps 0, ...,∞ and we have corresponding risky rates of the term-
structure so that the date-0 value of a promised Swiss franc at time t of a risky Franc promise is
equal to exp(−rtt). Let the constant coupon rate per Frankencoin be c. Now, the value of the
perpetual can be written as

v(0) =
∞∑
t=0

ce−rtt (3)

=

∞∑
t=0

ce−yt (4)

=
c

1− e−y
, (5)

where the second line replaces the time-specific discount rates by a yield, and the last line is an
application of geometric series. For the value to be at par, v(0) = 1, we have to choose the coupon
rate accordingly: c = 1 − e−y. Hence, if the interest earned from contributing ZCHF are in line
with discounting, the present value of one ZCHF is equal to one Swiss franc.
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The risky term-structure corresponds to the Swiss franc risk-free term-structure plus a spread
that compensates the investor for the risks. Whenever the risk-free term-structure, or the Swiss
franc risk changes, c has to be adapted for the value v(0) to be equal to one. In the Frankencoin
system, the yield is implicitly set by the capital contributors collectively as they can veto minters
that do not yield the right risk-adjusted return for the system. In effect, the contributors act as an
oracle, but for long term interest rates instead of short term prices.

For this to work, minters should either be forced to pay an adjustable interest rate on their open
positions, or the positions should be limited in time with a fixed interest rate that can change as
they apply for a renewal of their collateralized positions. The shorter the average term of the open
positions is, the faster the contributors can push the yield that can be earned from contributing to
the reserve towards the correct c. Generally, contributors should seek to increase the yield if there
is too little demand for holding ZCHF and vice versa.

The comparison with the consol shows nicely that it is not necessary for a stablecoin to be
directly convertible to the reference currency in order to have the same fundamental value. It
suffices if the coin offers the same expected return. Thereby, the problem is reduced to the ability
to pay out an equivalent interest.

4.3 Price Ceiling

While it is generally not possible to exchange Frankencoins directly into collateral residing in the
mint plugins, the minters will have to buy back their minted Frankencoins before they can get
their collateral back. Here, the minters face a risk of a short squeeze. By minting and selling
Frankencoins, they are short ZCHF and might be forced to pay more than one Swiss franc per
Frankencoin to unlock their collateral. So while savers face the risk of the Frankencoin falling below
the peg, minters face the risk of the Frankencoin departing upwards from the peg.

In the proposed setup, we start with a very simple mechanism to avert the risk of an overval-
uation: we provide a bridge plugin that allows holders of other Swiss franc based stablecoins to
convert them 1:1 into Frankencoins. As long as such bridge plugins exist, minters can be confident
that they do not need to overpay for the unlocking of their collateral. However, while relying on
other stablecoins can help in practice, it is not desirable to depend on them.

In the absence of bridge plugins, minters have to trust the contributors to always allow the
minting of new Frankencoins at competitive terms, such that a short-squeeze can be averted by
simply minting additional Frankencoins and repaying the open position with those. In effect, the
system relies on good governance by the contributors at both the supply and demand side. On the
supply side, contributors must allow economically sensible mint plugins and disallow irresponsible
ones. On the demand side, the contributors must ensure that the risk-adjusted interest rate tracks
that of the Swiss franc.

4.4 Long-term Incentives

Like many blockchain-based systems, the Frankencoin relies on the rationality of its participants.
There is no technical barrier for the contributors to mismanage the Frankencoin, for example by
letting a buggy mint plugin pass. It is in the economic interest of the contributors to look after
the system and to make it work as expected. In particular, contributors have to be aware that
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they would destroy the long-term value of the Frankencoin by letting it deport too far from the
peg. Since their reserve is at stake and they are the last who could cash out in case of a crash due
to a loss of trust, contributors have a strong incentive to not let the price fall. At the same time,
contributors also have a strong incentive to make sure that there is a wide range of available mint
plugins such that the risk of a short-squeeze for minters is under control.

The reason why contributors have such a strong interest in making sure the Frankencoin tracks
the value of the Swiss franc is that it enables them to earn net interest income to the extent that
the Frankencoin is used as a transactional currency. For example, if the open market interest
rate is 3% without any margin between borrowers and lenders, but only half of the outstanding
Frankencoins are in the reserve pool, then the pool contributors can effectively earn a yield 6% on
their contributions. This is only possible if the Frankencoin is valuable enough as a transactional
currency that half of the holders do not care about foregoing their interest. And the transactional
value is highest when the Frankencoin reliably tracks the value of the reference currency.

5 Implementation

This section describes the software architecture of the Frankencoin, with each subsection describing a
separate module of the system. It also serves as a guide for adventurous readers wishing to acquiring
some Frankencoins or otherwise taking part in the system. The proposed minting mechanisms are
referred to with the technical plugins, emphasizing the extensible and open architecture of the
system.

5.1 Frankencoin Contract

At the core, there is a contract that represents the Frankencoin with all the standard functionality
of an ERC-20 token. It also stores a list of mint plugins. Anyone can add new mint plugins to this
list and if their addition is not vetoed within three weeks, they can start minting Frankencoins to
the extent that the plugin allows. It is the responsibility of the minter to implement the mint plugin
such that it respects all capital and other requirements.

It seems important to us that new mint plugins are automatically approved if there is no veto
from the contributors. This adds to the decentralized nature of the system and minimizes the
necessary number of interventions. If proposing a new plugin is sufficiently costly and there is a
credible threat of undesired plugins being rejected, it will only very rarely be necessary to take
action and veto a plugin.

Anyone can also try to veto a proposed plugin, but for the veto to go through, one must have
the support of at least 3% of the outstanding reserve pool shares. Owner of pool shares can delegate
their voting power to anyone, allowing small share holder to organize themselves as a group with
voting power.

An example implementation can be found in Appendix D.

5.2 Reserve Pool Contract

The reserve pool allows anyone to contribute to the reserve and receive reserve pool shares in
exchange as specified in Section 3. Pool shares themselves are also freely transferable ERC-20
tokens.
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An example implementation can be found in Appendix E.

5.3 Bridge Plugin

The simplest possible mint plugin is one that is based on a stablecoin with the same reference
currency. For the Frankencoin, this could for example be the CryptoFranc (XCHF) issued by
Bitcoin Suisse or the Digital Swiss Franc (DCHF) issued by Sygnum. This mint plugin allows
anyone to deposit the specified stablecoin and to get Frankencoins in return. Also, the minting
contract would allow anyone to convert Frankencoins back into the specific stablecoin for as long as
there are any left.

An example implementation can be found in Appendix F.

5.4 Oracle-free Collateralized Mint Plugin

The oracle-free collateralized mint plugin is one of the cornerstones of this article. Once an instance
of the plugin is initialized and approved, it enables the owner to mint Frankencoins backed by
the specified collateral. It neither depends on an oracle nor on an external market. Each minter
must create their own instance of a mint plugin for each collateral asset they desire to use. Future
implementations might allow for more flexible use, e.g. by multiple different minters in parallel in
order to reduce the overhead and waiting time when opening a new position.

An example implementation can be found in Appendix G.

6 Risk Analysis

We first analyse the risk to capital contributors in the next section. As part of this analysis we
estimate the challenge success probability for a given starting level of the loan-to-value in Sec-
tion 6.1.1, and size the minting fee required to compensate for the risk of the capital contributors
in Section 6.1.2.

These results serve as foundation to calibrate risk-based capital requirements. Section 6.2 pro-
poses rules for capital requirements based on banking regulation. In Section 6.3 we propose a risk
based capital requirement based on modified Basel iii rules. If the capital drops below the minimal
capital requirement, no more Frankencoins can be issued through standard plugins. An exception
are mint plugins that are classified as risk-free, most notably bridge plugins to trusted stablecoins
of the same denomination, if any.

6.1 Contributor Risk from Collateralized Mint Plugin

The Frankencoin system is at risk of losing equity capital if a liquidation ends at a price below the
outstanding ZCHF amount. This section analyses this risk given the challenge mechanism defined
in Section 2.3. We use Bitcoin as an example collateral. As established in Section 2.3, the rational
bids imply prices close to (exogenous) market prices. We do not account for slippage incurred when
selling the collateral in exogenous markets, so we can use Bitcoin market prices for the exercise at
hand.
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The challenge starting level h′ is the level at which a rational system participant initiates a
challenge. Hence h′ is implicitly defined as

p0 = (1 + h′)
ZM

CM
(6)

= (1 + h′)
Z̃M

CC
(7)

(8)

where p0 is the exogenous market price at the time the challenge is started, and the second line
follows by definition of Z̃M . From Section 2.3 we have the condition for liquidation:

ZB < (1 + h)Z̃M , (9)

to which we add the time dimension now. We consider the asset return r̃t over the liquidation
horizon τ . The challenge is averted, if during the liquidation period a bid above the liquidation
threshold is realized. We can now express the condition for liquidation as a function of the asset
return, and the values h and h′:

er̃t <
1 + h

1 + h′
∀0 ≤ t ≤ τ. (10)

Proof. By definition, the liquidation ends at price pt′ = ZB/CC , where t′ is the time the challenge
was averted or τ if it wasn’t. We established that pt′ is close to the exogenous market price, and
hence pt′ = p0 exp(r̃t′). We use this to rewrite Equation (9)

pt′CC < (1 + h)Z̃M . (11)

Using Equation (7) we replace Z̃M to get

pt′CC < (1 + h)
p0CC

1 + h′
(12)

er̃t′ <
1 + h

1 + h′
. (13)

We can now see that replacing t′ with t and requiring 0 ≤ t ≤ τ Equation (10) is equivalent. ■

To prevent being outbidden, the rational bidder will bid only either towards the end of the
bidding horizon, or if the challenge can be averted. We can therefore assume the liquidation happens
at the price pτ unless it has been averted.

The profit P̃ to the capital contributors is zero in case the challenge is averted, positive in case
of a liquidation at a price pτ ≥ (1 + k) Z̃M

CC
, negative if the price is below, and zero if the challenge

is averted and no liquidation takes place. We define a dummy variable D that is exactly 1 in case
a challenge is successful and 0 otherwise:

D = 1er̃t< 1+h
1+h′ ∀ 0≤t≤τ (14)

We can now express the profit P̃ per unit of the challenged amount as the following random variable:

P̃ =
[
(1 + h′)er̃τ − (1 + k)

]
D (15)

Note that if the challenge starts at h′ ≥ h, the indicator function is always D = 0 as the challenge
is immediately ended again. We now determine the value P̃ to decide whether capital contributors
need to be compensated by a minting fee.
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To tackle the valuation of P̃ , we resort to the arbitrage free pricing principle, which states that
the value of a contingent claim is given by its discounted expected value under the risk-neutral
probability measure, see for example Björk (2009). We assume that the risk-free rate used for
discounting is equal to zero, which we consider adequate especially since the period τ is very short.
Let fτ (x) be the density function for the return distribution over the period τ . Now, we can value
P̃ conditional on the starting level of liquidation h′ as follows

EQ
τ

[
P̃ |h′

]
= D

∫ log 1+h
1+h′

−∞

[
(1 + h′)ex − (1 + k)

]
fτ (x)dx (16)

where the subscript τ emphasizes that the distribution depends on the liquidation period.

We now discuss h′. If we knew the distribution of starting levels h′, we could integrate out h′ to
arrive at EQ

τ

[
P̃
]
. As established, challengers trade off the probability of collecting the reward given

they issue a challenge versus the probability of not being able to be front-run by other challengers.
To investigate this trade off, we assume that challengers issue a challenge when the collateral value
reaches a level for which there is a given probability α that they receive the challenger reward. We
then investigate what minting fees each h′ (or equivalent, each α) implies.

Equation (16) uses the risk-neutral probability measure, often referred to as Q, rather than the
objective measure P. In practice, parameters for the measure P are extracted directly from market
data (e.g., sample volatilities and expected returns), whereas parameters for the measure Q have to
be extracted from option data under the same model assumptions (e.g., option implied volatilities).
With risk averse investors, the Q-measure puts more weight on adverse market events, see for
example Breeden and Litzenberger (1978), leading to a higher risk-neutral price of P̃ , compared
to the value obtained when integrating Equation (16) under the objective measure. We therefore
proceed by calibrating a probability distribution to observed market data and use this as a lower
bound for the price of P̃ , or, equivalently the minting fee should be at least equal to the negative
value of P̃ under the measure P:

Θ
(i)
F ≥ −EP

τ

[
P̃
]
, (17)

where we add the negative sign because P̃ is a profit. For brevity, we omit the superscript P in the
sequel.

6.1.1 Challenge success probability

We are now ready to calibrate the parameters. To do so, we evaluate the probability of liquidation
for different challenger levels h′. We then locate reasonable challenger levels and investigate the
lower bound of the minting fee, Θ

(i)
F , for the given level of h′. In Appendix C we describe the

BTCCHF candle-data that we use to calibrate the fees. We use 24h candle data (Open, Low, High,
Close) and use the bootstrap method introduced by Efron (1992) for estimation.

With candle data, we can readily determine whether for a given period, the challenge started at
the beginning of the candle would have been averted, D = 0, or succeeded D = 1, by

D̂τ = 1{
PH
PO

< 1+h
1+h′

}, (18)

where PO is the open price, PH the high price over period τ (without indexing the candle for
brevity), which follows directly from definition of D in Equation (14). For the bootstrap, we define
the following variables. Let N be the number of candle observations, B the number of bootstrap

17



replications, and D̂b = {D̂(b,1)
τ , ..., D̂

(b,N)
τ } the bth bootstrap replication for a period-τ dummy that

equals one if the challenge was not averted. The bootstrap estimate for the probability of liquidation
follows directly from Equation (18):

Ê
[
D|h′

]
=

1

B

B−1∑
j=0

1

N

N∑
n=1

D̂(j,n)
τ . (19)

For comparison, we also evaluate the probability of liquidation conditional on h′, assuming the
challenge cannot be averted prior to time τ . For this assumption we use both, a bootstrap evaluation
(replacing PH/PO by PC/PO, with PC equal to the close price, in Equation (18)) and a closed-form
evaluation assuming the returns are normally distributed:

Ê

[
1{r̃τ<log 1+h

1+h′ }

∣∣∣∣∣h′
]
= Φ

(
log(1 + h)− log(1 + h′)− µτ

στ

)
, (20)

where µτ and στ are location and scale parameters of the normal distribution, and Φ (·) represents
the standard normal cumulative distribution function. We use the sample mean and standard
deviation of the observed returns to estimate µτ and στ respectively. Figure 5 shows the results.
We see that allowing the challenge to be averted early significantly reduces the probability that a
challenge is successful when it is issued at a price close to the liquidation threshold. At (1 + h′)
about 2% below the liquidation threshold (1 + h), there is a fifty percent chance of the challenge
being successful.

The normal distribution overestimates the probability of liquidation for values h′ above the
liquidation threshold h, and underestimates the liquidation probability for value of h′ < h compared
to the bootstrap result. We use the variance resulting from the bootstrap replications to estimate
confidence intervals.

6.1.2 Minting fee valuation

Finally, we use use Equation (15) to arrive at our bootstrap point estimate for the value of the
liquidation profit P . Let r̂b = {r̂(b,1)τ , ..., r̂

(b,N)
τ } the bth bootstrap replication for a period-τ return,

now

Êτ

[
P̃ |h′

]
=

1

BN

B−1∑
j=0

N∑
n=1

D̂(j,n)
τ

[
(1 + h′)er̂

(j,n)
τ − (1 + k)

]
. (21)

We use B = 10, 000 bootstrap replications and calculate confidence intervals at the 1%-level by
applying the central limit theorem.7 The confidence interval result in ranges in the 0.01%-area.
Figure 6 shows the results. At low challenge levels, the contributors have to burn ZCHF and there
is a loss for them. At very high challenge levels, often the challenge does not result in a liquidation
and hence there is no gain or loss for contributors. Capital contributors make the most profit for
challenges that start at a level of about 1 + h′ = 107%.

In Figure 6 we see that capital contributors do not lose on average if the challenge starts above
1+h′ = 102%. From Figure 5 we learn that starting the challenge process at 1+h′ = 102%, there is
about a 90% probability that the challenge ends in a liquidation, hence the challenge is expected to

7Having a vector of B bootstrap estimates x, we report the point estimate as the mean of x, and the error at the
a-level as z1−a

√
V [x]/B with z1−a the standard normal quantile.
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Figure 5: Probability of Liquidation given h′. This figure plots the probability of the challenge
ending in a liquidation, when the challenge is started at a level h′, with the liquidation level at h = 0.10
and a challenge duration of 24 hours (solid black line). The probabilities are estimated via the bootstrap
(B = 5, 000 samples). Confidence intervals at the 1%-level remain below 0.05% around the point estimates
for each h′. For comparison, we hypothetically assume the challenges cannot be averted before the end of
the liquidation horizon (dashed and dotted curves). We compare the bootstrap estimate (dashed line termed
"empirical: not averted early"), with the theoretical probability using normally distributed returns (with
sample mean and standard-deviation).

start above the 102% level. We conclude that the minters do not need to be charged to compensate
the capital contributors, unless risk-aversion would be very high.

6.2 Capital Requirements

Banking regulation prescribes three types of capital requirements for which we find a meaning-
ful analogue in the Frankencoin system, see for example the Basel III banking regulation Basel
Committee on Banking Supervision (2010) or the Dodd-Frank Act Acharya et al. (2010).

1. Risk-based capital requirements. In the Frankencoin system, each mint plugin defines its own
reserve requirement. For each mint plugin, we define a reserve requirement. The fact that
the Frankencoin system uses shared capital, with plugin-specific reserve requirements adds a
diversification benefit, that is, adding capital requirements of two plugins together leads to
a greater or equal reserve than when estimating the capital requirement based on the two
plugins taken together.

2. Leverage limits restrict the overall amount of leverage in the balance sheet. The balance sheet
of Frankencoin is presented in Appendix A. This limit has two main benefits. First, leverage
limits are largely model-free and are therefore a safeguard against model risk (e.g., model risk
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Figure 6: Collateral mint plugin fee. We plot the value of profit and loss, given the liquidation level
start h′. Negative values observed for approximately 1 + h′ < 102% correspond to a loss for the capital
contributors. Challengers are likely to start the challenge at a level above h′ = 0.02 which corresponds to a
liquidation probability of over 90% as we see in Figure 5. Therefore we conclude that with these parameters,
we do not need to compensate capital contributors with a minting fee, unless there is a high risk-aversion.

arising from the risk-models used to calibrate plugin-specific capital requirements). Second, a
leverage limit provides us a global (i.e. Frankencoin-system-wide) capital limit.

3. Concentration limits. If the collateral of Frankencoin was mainly exposed to the price of
one asset, Frankencoin could more easily collapse following a large price drop of that asset,
compared to a more diversified collateral in the system. We therefore aim at limiting the
concentration of collateral-type.

Of these three measures, only the risk-based capital requirements are explicitly implemented in
the provided reference implementation. Furthermore, similar to clearing houses, where each clearing
member is required to contribute to the guaranty fund based on the risk of their position, borrowers
provide a compulsory minting contribution as detailed in Section 3.2.

A simple way to measure concentration is the one-firm concentration ratio, see Curry and George
(1983), which equals the percentage of market share held by the largest firm. Let K be the number
of mint plugins. Each mint plugin tracks the amount of ZCHF issued and not burned, zj .8 The
relative amount issued by plugin j is given by sj = zj/

∑K
i zi. We aim to prevent that the largest

sj is beyond a threshold. However, when applying this restriction on a system-wide level, we run
into the problem that the system could consist of multiple different plugins with the same collateral,
or collateral with high price correlation. We therefore suggest that each mint plugin comes with its
own concentration threshold θ

(C)
i , if such a concentration limit is to be implemented. Once a mint

8If collateral is liquidated, the ZCHF burnt are subtracted from zj .
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plugin reaches its threshold, θ(C)
i , the plugin cannot issue any more ZCHF until the concentration

is reduced.

In the spirit of the creators of the leverage limits, we aim to have the least possible assumptions
to define leverage limits in our system. We therefore do not want to rely on any collateral valuations
or distributional assumptions. Bridge plugins should not count towards the leverage ratio, because
their value is stable and diversified through the concentration limits, and because they provide a
convenient way to issue new ZCHF that are subsequently used as capital contribution. However, we
want to limit the amount of ZCHF issued through collateralized mint plugins relative to the ZCHF
held as a reserve in the capital contributor pool. We therefore define the leverage ratio as

λ =
1

R

∑
i∈C

zi, (22)

where zi is the amount of tokens issued by mint plugin i, C is the set of plugin indices that are to
be included in the leverage calculation (i.e., not the bridge plugins), and R is the total amount of
contributed ZCHF in the reserve. The leverage ratio could be enforced by tracking the total amount
of relevant outstanding Frankencoins and then denying additional minting if the reserves are not
high enough, i.e. if the leverage ratio is larger than a governance set threshold θ(L).

We examine the risk-based capital requirement more deeply in the next section. Risk-based
capital requirements may involve relatively complex calculations for current blockchain capabilities,
however, the calculations can be done off-chain and only the resulting parameters need to be stored
on-chain.

Despite the comprehensive capital management measures, there are only a few parameters and
summary statistics that need to be stored on-chain, which we summarize in Table 6.

Table 6: Summary of parameters. This table lists the parameters and data that needs to be stored to
implement the mentioned risk mitigation measures.

Element To Store Type Description

zi Data Each mint plugin i keeps track of ZCHF issued by the plugin
and not burned

z, zC Data The governance contract keeps track of the sum of zi and the
sum over the zi issued by leverage constraint relevant contracts

R Data Amount of ZCHF in capital reserves
ℓi = 1{i∈C} Parameter Each of the K mint plugins defines whether they are part of the

leverage ratio calculation or not
h, τ , k Parameter Parameters for collateralized mint plugin
Θ(L) Parameter Maximal leverage ratio
Θ

(C)
i Parameter Maximal relative amount of ZCHF issued by mint plugin i to

limit concentration risk
Θ

(F )
i Parameter Each mint plugin has a minting fee

Θ
(R)
i Parameter Each mint plugin sets its own risk-based reserve requirement,

relative to the issued ZCHF
Θ

(I)
i Parameter Each mint plugin can define an interest rate paid to capital

contributors (can be zero, e.g., in case of bridge plugins)
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6.3 Risk-based Capital Requirements

Lombard loans are loans extended by banks to their customers, secured by the customers’ securities
that are held in bank custody. In the Lombard loan agreement, bank and customer agree on the
terms of the loan, including that additional assets have to be provided in case the value of the
collateral falls below a margin call level. The bank has the right to sell the pledged securities, if
the value falls below an agreed level. In the Frankencoin system, there is no agreement beyond
what is defined in the smart contract, and hence there will not be any bankruptcy litigation. As a
consequence, there is a loss to the system that has to be covered with Frankencoin reserves, as soon
as the collateral drops below the loan amount. Not surprisingly, this difference renders the Basel iii
capital requirements for collateralized loans inadequate for the Frankencoin system. We therefore
propose a more conservative approach to capital reserves.

Each mint plugin defines the required reserves of ZCHF to be held against the issued volume
of ZCHF. We now assess how to specifically determine the risk-based capital requirements for our
illustrative setup. We do not require risk-based capital reserves for the bridge plugins, so we focus
entirely on the collateralized mint plugin, collateralized in Bitcoin.

The assessment we perform now differs from the one we made to determine the minimal fee in
two main aspects, (1) we want to estimate a loss for the whole collateralized mint plugin not only
for an individual position, and (2) we are not looking for an insurance valuation but for the capital
required. The latter point implies that we do not need any assumption on risk-neutral measures
but we can directly work with the observed data and use real world probabilities.

We start by applying the Basel iii rules for risk based capital.

6.3.1 From Basel Rules to Frankencoin Capital Requirements

The Basel Committee of Banking Supervision defines capital rules for collateralized loans in the
Basel iii regulatory framework. In view of the authors, the collateralized mint plugin best meets the
conditions to be considered a "repo-style transaction", see 22.66 in Basel Committee on Banking
Supervision (2019a), henceforth [CRE22]. In this framework, the bank first weights assets according
to the risk to obtain the risk-weighted assets (RWA). The bank is then required to hold a certain
amount of capital, for example Common Equity Tier 1 must be at least 4.5% of RWA and total
capital must be at least 8% of RWA, for details see Basel Committee on Banking Supervision (2019b).
For collateralized loans, the rules are detailed in [CRE22]. Banks have two options: "Banks may
opt for either the simple approach, which substitutes the risk weighting of the collateral for the risk
weighting of the counterparty for the collateralized portion of the exposure (generally subject to a 20%
floor), or for the comprehensive approach, which allows a more precise offset of collateral against
exposures, by effectively reducing the exposure amount by the value ascribed to the collateral", see
22.12 in [CRE22].

We focus on the comprehensive approach. First, the bank determines the exposure amount after
risk mitigation, E∗, which depends on the loan and the collateral. Both are subject to a haircut,
see 22.40 in [CRE22]:

E∗ = max[0, E(1 +He)− C(1−Hc −Hfx), (23)

where E∗ is the exposure amount after risk mitigation, E the current value of the exposure (the
loan), He haircut appropriate to the exposure, C the current value of the collateral received, Hc the
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haircut appropriate to the collateral, Hfx the haircut appropriate for currency mismatch between
the collateral and exposure. The exposure amount E∗ is to be multiplied by the risk weight of
the counterparty to obtain the risk weighted asset amount for the collateralized loan. Collateral
haircuts are either determined based on the type of collateral (e.g., 25% for ‘other equity‘ and a
holding period of 10 days). The exposure is then multiplied by the risk weight of the counterparty
to obtain RWA. If the counterparty is not rated, a weight of 1.5 is applied. Figure 7 summarizes this
approach. In Appendix B we calculate the Basel iii capital requirements using the comprehensive
approach and using the approach with own haircut estimates based on a 99%-VaR as per Basel
iii. Table 7 shows the results: per Basel, the required capital reserve results to only about 1%
of outstanding loans, even when assuming a conservative loan-to-value ratio of 1/(1 + h) = 1/1.1
(which is always below current exposure assuming liquidations are effective).

Figure 7: Basel iii vs own approach. Basel iii subtracts a haircut from the current collateralization
value (1 + h∗) to obtain the exposure after risk mitigation (shaded area). This quantity is multiplied by 1.5
for unrated counterparties. Total capital is to be 8% of this. However, in the Frankencoin system there is
no loan agreement beyond the smart contract, and hence no litigation. We therefore propose a more strict
approach, in which (1) the calculation of the haircut starts at a conservative liquidation level (1 + h′), (2)
the entire exposure after risk mitigation is to be covered, as opposed to 1.5 · 8% = 12%.

To render the Frankencoin system resilient, the capital requirements must not assume that
litigation is possible, hence the whole exposure after risk mitigation should be covered by capital
reserves, as opposed to 12% per Basel iii. Second, instead of applying the haircut on the current
exposure value, (1 + h∗) as per Basel iii, we apply the haircut on a conservative liquidation level
(1 + h′). This is illustrated in Figure 7. To calculate the haircut, we estimate an empirical VaR at
the 99%-level (a VaR level in line with Basel iii). We call this the Frankencoin Proposal in Table 7.
Second, we look at the Basel iii requirements for collateralized lending

6.3.2 Capital Estimation per Frankencoin Proposal

We construct empirical samples of loss data by applying the 24h log-returns to the loss function
given by Equation (15), which we repeat here:

P̃ =
[
(1 + h′)er̃τ − (1 + k)

]
D,
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Method Capital
Frankencoin Proposal (empirical VaR) 10%
RWA based, Basel iii Comprehensive 1.1%
RWA based, Basel iii Comprehensive (own haircuts) 1.3%

Table 7: Risk-based Capital Requirements. Results of capital reserves required using different ap-
proaches. For the setup at hand, we recommend that the system should hold 10% of the outstanding loans
as Frankencoin reserves.

and we multiply the samples by -1 to have a positive number for a loss. Figure 8 gives an overview
of the loss data for different challenger levels h′ via boxplots. We see that the median level of losses
are benign, even for very low challenger levels of h′ = −1% (meaning the liquidation is only started
when the collateral has a value of 99% of the loan notional, although the position would liquidate if
the collateral is at 110% of the loan notional). However, we also see that there are high losses for all
levels of h′ depicted, driven by two extreme returns in the data, where the loss exceeds 20% of the
loan notional. These losses are at a loan level and apply if the loan challenge starts at a collateral
coverage ratio of (1 + h′). On a plugin-wide level, we would only lose the same percentage of the
outstanding loan notional, if all loans started at (1 + h′) simultaneously. Realistically, collateral
coverage ratios are more spread out and hence, the loan-level losses observed in Figure 8 are upper
bounds to the plugin-wide loss.

Table 8 presents the 99-percentiles for daily losses (using the loss empirical loss distribution
seen in Figure 8, given the challenge start level h′. A conservative starting level is h′ = 2% as
we have seen in the previous chapter. The associated 10.73% loss at the 99%-level would assume
that all loans have an equally low collateralization of h′. To conclude, using our proposed approach
that deviates from the Basel iii rules towards the conservative side, we propose to set the capital
requirement to 10% of the outstanding loans.

h′ VaR99, %
-0.01 13.42
0.00 12.52
0.01 11.63
0.02 10.73
0.03 9.84
0.04 8.94
0.05 8.05
0.06 7.15
0.07 6.26
0.08 5.36
0.09 3.77
0.10 0.00

Table 8: Empirical VaR. This table shows the empirical VaR in percent of the outstanding loan amount
given the challenge starting level h′.
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Figure 8: Empirical Loss Boxplot. This figure shows standard boxplots for different challenger levels
h′, given that a liquidation is triggered when the challenge results in a collateral value of below 110% of the
loan, and a challenger fee of k = 2%. The vertical bar depicts the median, the boxes reach from the first
quartile to the third quartile, the whiskers extend to the max/min or at most 1.5 times the range of the box,
circles are plotted outside the span of the whiskers. For values h′ closer to h = 0.10, the loss more often
ends in a gain (negative number). At h = 0.10 the challenge is averted. Losses stay on average benign but
we also observe a few very high losses that exceed 20% of the loan notional due to two very negative returns
(-49%, -31%).

7 Conclusion

Blockchain technology opens the possibility to create new kind of monetary institutions that are
governed in a decentralized way. Unlike bank loans that are issued by a centralized entity, the
presented Frankencoin can be minted by the borrowers themselves, given that they provide suitable
collateral, and the system has sufficient capital in its reserve. In the presence of a central bank digi-
tal currency (CBDC), see for example Chaum et al. (2021) or Brunnermeier and Niepelt (2019), the
presented Frankencoin could come with a bridge to that CBDC, in which case the Frankencoin sys-
tem could be seen as a fractional reserve multiplier just like the established banks are for traditional
central bank money. With that perspective, it is no surprise that risk mitigation strategies from
the current banking regulation can serve as a starting point to risk mitigation in the Frankencoin
system.
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A Frankencoin Balance Sheet

Figure 9 presents a stylized balance sheet view of the Frankencoin system. When central banks
print and issue currency, the outstanding amounts appear on the liability side of the balance sheet.
Similarly, the minted Frankencoins also appear on the same side of the balance sheet. To see how
they end up there, one first needs to consider the balance sheet of an individual minter. When a
minter mints new Frankencoins, the freshly minted coins appear on the asset side of the minter’s
balance and at the same time, a repayment obligation is created on the liabilities side. For the
Frankencoin system, the opposite happens: the minter’s repayment obligation appears on the asset
side and the minted ZCHF among the liabilities.

Figure 9: Balance Sheet. This diagram schematizes the balance sheet of the Frankencoin system.

One should note that the total balance sheet of the Frankencoin system is larger than the total
number of ZCHF in circulation. That is because the same Frankencoin can appear multiple times in
the balance sheet. If a minter sells his ZCHF and the buyer deposits them with the reserves, these
Frankencoins appear a second time, this time as reserves with a corresponding equity position on the
liabilities side. Equity capital stems from accumulated plugin fees as well as capital contributions
paid in by the contributors.

In case a minter cannot meet the repayment obligation, the ZCHF to close the minter’s position
have to be (partially) taken out of the reserve and equity is reduced. In the depicted balance sheet,
bound equity and free equity is distinguished, with the bound equity representing the amount of
equity that is needed according to the capital requirements to absorb collateralization failures. The
provided collateral itself does not appear on the balance sheet as it belongs to the minter until it is
either auctioned off or returned. Free equity could in theory be withdrawn by the contributors or
otherwise paid out, for example as interest to the savers.

B Applying Basel Rules for Collateralized Lending

Haircuts are determined based on the type of exposure, see 22.4 in [CRE22]. For main equity indices
and gold, the haircut is 15%, for other equities 25% (10 day holding period). Supervisors may also
permit the banks to calculate their own haircuts.
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Application of the comprehensive Approach

For repo-style transactions, supervisors may choose not to apply the haircuts specified in the com-
prehensive approach and may instead apply a haircut of zero, if ’the counterparty is a core market
participant’ as determined by the regulator. This would result in zero RWA because the collateral-
ized mint plugin requires over-collateralization of all loans.

If the Frankencoin system is not exempt from the requirement that the counterparty is to be a
core market participant, we may choose the parameters as follows.

He = 0 The exposure is in CHF (cash), hence no valuation risk
Hc = 25%/

√
2 The ’other equity’ haircut seems to be the most appropriate to reflect collateral

in BTC. The 25% are for a 10-day holding period, hence we scale by 1/
√
2 to

have a 5-day haircut (which is the minimum allowed – our actual holding period
is 1 day)

Hfx = 0% The asset is denominated in CHF, hence no additional currency risk

The above numbers are based on a 10-day holding period. If holding periods differ, the per-
centages are to be scaled by the square-root of time formula. However, for repo-style transactions,
a minimum holding period of five days applies. Now, assuming a current loan to value ration of
1/(1 + h∗), and an (artificial) holding period of 5 days, we use Equation (23) and set E = 1,
C = (1 + h∗):

E(h∗) = max[0, 1− (1 + h∗)(1−Hc)], (24)
= max[0, Hc(1 + h∗)− h∗], (25)

where the second line follows from algebra. For example, if h∗ > 0.21, the resulting exposure is
zero (using Hc = 25%/

√
2, we set the second term in the max-term to zero and solve for h∗).

Finally, the exposure E∗ needs to be weighted by the counterparty risk weight. The counterparty
in the Frankencoin system has generally no rating and cannot be forced to make up for losses in the
system, hence the worst weight has to apply, which is w=150%, see Basel Committee on Banking
Supervision (2017). Assuming that the loans are just at the (previously defined) liquidation level
of h = 10%, we arrive at RWA of

E(h)w = 0.09445 · 1.5 = 14%

of the loan amount, of which 8% are required as total capital. Hence, the capital requirement
amounts to 1.1% of outstanding loans.

Comprehensive Approach: own Estimates for Haircuts

To calculate the haircuts, a 99th percentile, one-tailed confidence interval is to be used (see 22.50 of
[CRE22]), and the choice of historical observation period (sample period) for calculating haircuts
shall be a minimum of one year (see 22.53). The minimum holding period is to be set to 5 days.
The VaR results in

V aRq = (1− exp (rq)) + k, (26)

where q is the quantile (99% per Basel iii), rq is the quantile return, and k the challenger fee.
Using the historical data detailed in Appendix C, the 5-day loss at the 99% quantile (using 1-day
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overlapping returns to calculate historical VaR at 1%-level) amounts to 19.44%+ k = 21.44% (this
compares to a haircut of 25%/

√
2 ≈ 17.68% used above). The resulting RWA, using Equation (25)

and multiplying by the risk weight, at h∗ = 10% is 20.38%, of which 8% are required as capital.9

Hence, the capital requirement amounts to 1.6% of outstanding loans.

C Data

Figure 10: BTCCHF Level Data. This figure plots the level data of the BTCCHF time-series. We have
890 observations of daily candle data without gaps from 2019-12-07 to 2022-05-14.

We gather 1-hour candle data from Kraken, consisting of a timestamp, open, low, high, close,
number of trades, and volume.10 From each open and close price we calculate 24h log-returns. Our
return data has the following summary statistics. Table 10 tests the time-series of 24h log-returns

Table 9: Summary Statistics for 24h log-return data.

num. observations 890
min, max [-49.09%, 25.13%]
mean 0.18%
variance 0.0018
skewness -1.90
kurtosis 25.93

for stationarity via Augmented Dickey-Fuller test and rejects the null-hypothesis of non-stationarity.

Table 10: Stationarity Test. The ADF test suggests that the log-return data is stationary.

ADF Statistic: -13.8
p-value: 0.000000
Critical Value for 1%: -3.4

9RWA = E(h∗)w = (VaR(1 + h∗)− h∗)1.5
10See https://support.kraken.com/hc/en-us/articles/360047124832-Downloadable-historical-OHLCVT

-Open-High-Low-Close-Volume-Trades-data
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Figure 11 present a quantile-quantile plot against the normal distribution and a histogram.
Figure 11 also analyses serial correlation of the 24h log-returns. The Autocorrelation Function
shows a significant negative correlation at lag one, which however turns out to be driven from
extreme returns, as we can see on plot (d).

D Frankencoin ERC20 Contract

Listing 1: The Frankencoin token contract, inheriting the standard ERC20 features from an external source.
// SPDX -License -Identifier: MIT
pragma solidity ^0.8.0;

import "./ ERC20.sol";
import "./ IReservePool.sol";
import "./ IFrankencoin.sol";

contract Frankencoin is ERC20 , IFrankencoin {

uint256 private constant MINTER_REMOVED = 1;

uint256 public constant MIN_FEE = 1000 * (10**18);
uint256 public constant MIN_APPLICATION_PERIOD = 1000 * (10**18);

address public immutable reserve;
uint256 public reserveRequirement;

mapping (address => uint256) public minters;

event MinterApplied(address indexed minter , uint256 applicationPeriod , uint256
applicationFee);

event MinterDenied(address indexed minter);

constructor(address _reserve) ERC20 (18){
reserve = _reserve;

}

function name() external pure returns (string memory){
return "Frankencoin V1";

}

function symbol () external pure returns (string memory){
return "ZCHF";

}

function suggestMinter(address minter , uint256 applicationPeriod , uint256
applicationFee) external {
require(applicationPeriod >= MIN_APPLICATION_PERIOD || totalSupply () == 0, "

period too short");
require(applicationFee >= MIN_FEE || totalSupply () == 0, "fee too low");
require(minters[minter] == 0);
_transfer(msg.sender , reserve , applicationFee);
minters[minter] = block.timestamp + applicationPeriod;
emit MinterApplied(minter , applicationPeriod , applicationFee);

}

function denyMinter(address minter , address [] calldata helpers) external {
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(a) (b)

(c) (d)

Figure 11: Return Data from Kraken. Plot (a) shows a quantile-quantile plot of the 24h log-return
data against a normal distribution, (b) plots a histogram of the 24h log-returns. From (a) we see that we
have more extreme returns than what a normal distribution would suggest. In the center of the distribution,
the returns move less than the normal distribution would imply. Plot (c) shows the autocorrelation function
and a confidence band at the 0.95-level. Chart (d) plots the returns against the previous day return. The
figure indicates that the significant autocorrelation at level 1 must be driven by rare extreme returns.
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require(block.timestamp <= minters[minter], "too late");
require(IReservePool(reserve).isQualified(msg.sender , helpers), "not

qualified ");
delete minters[minter ];
emit MinterDenied(minter);

}

function mintAndCall(address target , uint256 amount , uint256
reserveRequirementIncrement) external {
mint(target , amount , reserveRequirementIncrement);
IERC677Receiver(target).onTokenTransfer(msg.sender , amount , new bytes (0));

}

function mint(address target , uint256 amount , uint256
reserveRequirementIncrement) public {
require(isMinter(msg.sender), "not approved minter ");
reserveRequirement += reserveRequirementIncrement;
_mint(target , amount);

}

function burn(address target , uint256 amount , uint256
reserveRequirementDecrement) external {
require(isMinter(msg.sender), "not approved minter ");
reserveRequirement -= reserveRequirementDecrement;
_burn(target , amount);

}

function burn(uint256 amount) external {
_burn(msg.sender , amount);

}

function notifyLoss(uint256 amount) external {
require(isMinter(msg.sender));
_transfer(reserve , msg.sender , amount);

}

function isMinter(address minter) public view returns (bool){
return block.timestamp > minters[minter ];

}

function reserves () external view returns (uint256) {
return balanceOf(reserve);

}

function hasEnoughReserves () external view returns (bool){
return balanceOf(reserve) >= reserveRequirement;

}

}

E Reserve Pool Contract

Listing 2: The contract representing the reserve pool.
// SPDX -License -Identifier: MIT

pragma solidity >=0.8.0 <0.9.0;
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import "./ IFrankencoin.sol";
import "./ IERC677Receiver.sol";
import "./ ERC20.sol";

/**
* @title Reserve pool for the Frankencoin
*/

contract ReservePool is ERC20 {

uint32 private constant QUORUM = 300;

mapping (address => address) private delegates;

IFrankencoin public zchf;

constructor () ERC20 (18){
}

function initialize(address frankencoin) external {
require(address(zchf) == address (0x0));
zchf = IFrankencoin(frankencoin);

}

function name() external pure returns (string memory) {
return "Frankencoin Pool Share";

}

function symbol () external pure returns (string memory) {
return "FPS";

}

function price () public view returns (uint256){
uint256 balance = zchf.balanceOf(address(this));
if (balance == 0){

return 0;
} else {

return balance / totalSupply ();
}

}

function isQualified(address sender , address [] calldata helpers) external
returns (bool) {
uint256 votes = balanceOf(sender);
for (uint i=0; i<helpers.length; i++){

address current = helpers[i];
require(current != sender);
require(canVoteFor(sender , current));
for (uint j=i+1; j<helpers.length; j++){

require(current != helpers[j]);
}
votes += balanceOf(current);

}
return votes * 10000 >= QUORUM * totalSupply ();

}

function delegateVoteTo(address delegate) external {
delegates[msg.sender] = delegate;

}
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function canVoteFor(address delegate , address owner) public returns (bool) {
if (owner == delegate){

return true;
} else if (owner == address (0x0)){

return false;
} else {

return canVoteFor(delegate , delegates[owner ]);
}

}

function onTokenTransfer(address from , uint256 amount , bytes calldata)
external returns (bool) {
require(msg.sender == address(zchf));
uint256 total = totalSupply ();
if (total == 0){

// Initialization of first shares at 1:1
_mint(from , amount);

} else {
_mint(from , amount * totalSupply () / (zchf.balanceOf(address(this)) -

amount));
}
return true;

}

function redeem(uint256 shares) external returns (uint256) {
uint256 proceeds = shares * zchf.balanceOf(address(this)) / totalSupply ();
_burn(msg.sender , shares);
zchf.transfer(msg.sender , proceeds);
require(zchf.hasEnoughReserves () || zchf.isMinter(msg.sender), "reserve

requirement ");
return proceeds;

}

function redeemableBalance(address holder) public view returns (uint256){
return balanceOf(holder) * zchf.balanceOf(address(this)) / totalSupply ();

}

}

F Stablecoin Bridge Contract

Listing 3: A mint plugin to create a bridge to an existing Swiss franc stablecoin
// SPDX -License -Identifier: MIT
pragma solidity ^0.8.0;

import "./ IERC20.sol";
import "./ IFrankencoin.sol";

/**
* A minting contract for another CHF stablecoin that we trust.
*/

contract StablecoinBridge {

IERC20 public immutable chf;
IFrankencoin public immutable zchf;
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uint256 public immutable horizon;

constructor(address other , address zchfAddress){
chf = IERC20(other);
zchf = IFrankencoin(zchfAddress);
horizon = block.timestamp + 52 weeks;

}

function mint(address target , uint256 amount) external {
require(block.timestamp <= horizon);
chf.transferFrom(msg.sender , address(this), amount);
zchf.mint(target , amount , 0);

}

function burn(address target , uint256 amount) external {
zchf.burn(msg.sender , amount , 0);
chf.transfer(target , amount);

}

}

G Collateralized Minting Contract

Listing 4: A sample implementation of the presented collateralized minting mechanism. For simplicity, it
only allows one minter and one challenge at a time.
// SPDX -License -Identifier: MIT
pragma solidity ^0.8.0;

import "./ IERC20.sol";
import "./ IReservePool.sol";
import "./ IFrankencoin.sol";
import "./ Ownable.sol";
import "./ IERC677Receiver.sol";

/**
* A simple collateralized minting contract.
* This is a proof of concept that only allows one challenge at a time
* and does not support fractional challenges.
*/

contract CollateralizedMinter is Ownable , IERC677Receiver {

uint32 public constant BASE = 1000000;
uint32 public constant COLLATERALIZATION = 1250000; // 125%
uint32 public constant CHALLENGER_REWARD = 20000; // 2%

uint256 public constant MIN_CHALLENGE = 100 * 10**18;

uint256 public constant CHALLENGE_PERIOD = 7 days;

IERC20 immutable collateral;
IFrankencoin immutable zchf;
IReservePool immutable reserve;

bool private initialized;
uint32 public challengeCount;
uint32 public closedChallenges;
uint256 public coolDownEnd; // cool down after averted challenges
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uint256 public minted; // excluding the reserve contribution
uint256 public mintingLimit; // excluding the reserve contribution
uint256 public depositedCollateral;

mapping (uint32 => Challenge) private challenges;

struct Challenge {
address challenger;
uint256 size;
uint256 end;
address bidder;
uint256 bid;

}

constructor(address zchfAddress , address collateralAddress) Ownable(msg.sender
) {
collateral = IERC20(collateralAddress);
zchf = IFrankencoin(zchfAddress);
reserve = IReservePool(zchf.reserve ());

}

function initialize(uint256 _mintingLimit , uint256 _collateralAmount , uint256
period , uint256 fee) public {
require (! initialized);
initialized = true;
mintingLimit = _mintingLimit;
depositedCollateral = _collateralAmount;
collateral.transferFrom(msg.sender , address(this), _collateralAmount);
zchf.suggestMinter(address(this), period , fee);
reserve.delegateVoteTo(msg.sender);

}

function mint(address target) public {
uint256 amount = mintingLimit; // todo: be more flexible
require(minted + amount <= mintingLimit);
uint256 capitalReserve = amount * (COLLATERALIZATION - BASE) / BASE; //

25% of the minted amount
zchf.mint(target , amount , 0);
zchf.mintAndCall(address(reserve), capitalReserve , capitalReserve);
minted += amount;

}

function payback () external noChallenge {
uint256 amount = mintingLimit; // todo: be more flexible
zchf.transferFrom(msg.sender , address(this), amount);
processPayback(amount);

}

// return Frankencoins without reducing collateral
function onTokenTransfer(address from , uint256 returnedCurrency , bytes

calldata data) external noChallenge returns (bool) {
require(msg.sender == address(zchf));
require(returnedCurrency == mintingLimit);
processPayback(returnedCurrency);
return true;

}

function processPayback(uint256 returnedCurrency) internal {

36



uint256 poolshare = reserve.redeemableBalance(address(this));
uint256 mintedIncludingReserve = minted * COLLATERALIZATION / BASE;
if (poolshare >= mintedIncludingReserve) {

// our pool share has become so valuable that the loan has paid for
itself , return everything

reserve.redeem(reserve.balanceOf(address(this)));
zchf.burn(address(this), mintedIncludingReserve ,

mintedIncludingReserve - minted);
zchf.transfer(owner , returnedCurrency + poolshare -

mintedIncludingReserve);
minted = 0;

} else {
uint256 fundsToRepay = mintedIncludingReserve - poolshare; // that ’s

how much the minter must pay to close the position
if (returnedCurrency > fundsToRepay){

zchf.transfer(owner , returnedCurrency - fundsToRepay);
returnedCurrency = fundsToRepay;

}
reserve.redeem(reserve.balanceOf(address(this)) * returnedCurrency /

fundsToRepay);
uint256 burnAmount = mintedIncludingReserve * returnedCurrency /

fundsToRepay;
uint256 reserveAmount = burnAmount * (COLLATERALIZATION - BASE) /

COLLATERALIZATION;
zchf.burn(address(this), burnAmount , reserveAmount);
minted -= minted * returnedCurrency / fundsToRepay;

}
}

function withdrawCollateral(address target , uint256 amount) onlyOwner public
noChallenge {
internalWithdrawCollateral(target , amount);

}

function internalWithdrawCollateral(address target , uint256 amount) internal {
uint256 freeCollateral = (depositedCollateral * (mintingLimit - minted)) /

mintingLimit;
require(amount <= freeCollateral);
collateral.transfer(target , amount);
mintingLimit -= mintingLimit * amount / depositedCollateral;
depositedCollateral -= amount;
require(minted <= mintingLimit);

}

modifier noChallenge (){
require(closedChallenges == challengeCount && block.timestamp >

coolDownEnd);
_;

}

function launchChallenge(uint256 challengeSize) external returns (uint32) {
require(challengeSize >= MIN_CHALLENGE);
collateral.transferFrom(msg.sender , address(this), challengeSize);
uint32 number = challengeCount ++;
challenges[number] = Challenge(msg.sender , challengeSize , block.timestamp

+ CHALLENGE_PERIOD , address (0x0), 0);
return number;

}
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function bid(uint32 challengeNumber , uint256 amount) external {
Challenge memory challenge = challenges[challengeNumber ];
require(block.timestamp < challenge.end);
require(amount > challenge.bid);
if (challenge.bid > 0){

zchf.transfer(challenge.bidder , challenge.bid); // return old bid
}
if (amount * depositedCollateral >= mintingLimit * COLLATERALIZATION /

BASE * challenge.size){
// bid above Z_B/C_C >= (1+h)Z_M/C_M , challenge averted , end

immediately
zchf.transferFrom(msg.sender , challenge.challenger , amount);
collateral.transfer(msg.sender , challenge.size);
closedChallenges ++;
coolDownEnd = block.timestamp + 1 days;
delete challenges[challengeNumber ];

} else {
zchf.transferFrom(msg.sender , address(this), amount);
challenge.bid = amount;
challenge.bidder = msg.sender;

}
}

function end(uint32 challengeNumber) external {
Challenge storage challenge = challenges[challengeNumber ];
require(block.timestamp >= challenge.end);
// challenge must have been successful , because otherwise it would have

immediately ended on placing the winning bid
uint256 challengedCollateral = challenge.size >= depositedCollateral ?

depositedCollateral : challenge.size;
uint256 challengedMintings = mintingLimit * challengedCollateral /

depositedCollateral;
uint256 challengerReward = CHALLENGER_REWARD * challengedMintings / BASE;
collateral.transfer(challenge.challenger , challenge.size); // return the

challenger ’s collateral
collateral.transfer(challenge.bidder , challenge.size); // bidder gets

collateral of owner
depositedCollateral -= challenge.size;
if (challengerReward >= challenge.bid) {

// pay out the reward
zchf.transfer(challenge.challenger , challengerReward);

} else {
// highest bid was lower than challenger reward , this is an
// edge case , solved slightly differently than in paper
zchf.transfer(challenge.challenger , challenge.bid);

}
uint256 moneyLeft = challenge.bid - challengerReward;
if (minted == 0){

// nothing minted yet , return rest of the collateral
collateral.transfer(owner , depositedCollateral);
if (moneyLeft > challengedMintings){

zchf.transfer(owner , challengedMintings);
zchf.transfer(address(reserve), moneyLeft - challengedMintings);

} else {
zchf.transfer(owner , moneyLeft);

}
mintingLimit = 0;
depositedCollateral = 0;

} else {
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uint256 amountToBurn = challengedMintings * COLLATERALIZATION / BASE;
if (moneyLeft >= amountToBurn){

zchf.transfer(address(reserve), moneyLeft - amountToBurn);
} else {

zchf.notifyLoss(amountToBurn - moneyLeft);
}
zchf.burn(address(this), amountToBurn , amountToBurn -

challengedMintings);
}
closedChallenges ++;
delete challenges[challengeNumber ];

}

}
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