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Abstract

We report estimates of the dynamic effects of a technology shock, and
then use these to estimate the parameters of a dynamic general equilib-
rium model with money. We find: (i) a positive technology shock drives
up hours worked, consumption, investment and output; (ii) the positive re-
sponse of hours worked reflects that the Fed has in practice accommodated
technology shocks; (iii) model parameter values and functional forms that
match the response of macroeconomic variables to monetary policy shocks
also work well for technology shocks; (iv) while technology shocks account
for a large fraction of the lower frequency component of economic fluctua-
tions, they account for only a small part of the business cycle component
of fluctuations.
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1. Introduction

Our objective is to understand the role of technology shocks in aggregate fluctuations. To do
this, we pursue an approach that has proved useful in the literature on monetary shocks. In
particular, we first obtain an estimate of the dynamic macroeconomic effects of a technology
shock, using reduced form methods that rely relatively little on a priori restrictions. Second,
we estimate a dynamic general equilibrium model by choosing its parameters to match the
estimated effects of technology shocks as closely as possible. To discipline the analysis, we
also incorporate estimates of the dynamic effects of monetary policy shocks. We do this
to make sure that the model which helps us understand the effects of technology shocks
does not conflict in any way with models shown previously to help understand the effects
of monetary policy shocks. A major result of this paper is that there is no conflict. Model
parameters and functional forms shown in Christiano, Eichenbaum and Evans (2001) to fit
the dynamic effects of monetary policy shocks also work for technology shocks.
We now briefly summarize our findings. To estimate the dynamic effects of technology

shocks, we follow Gali (1999) and Francis and Ramey (2001) in assuming that innovations
to technology shock are the only disturbance that affects the level of labor productivity in
the long run. This assumption is appealing because it is a feature of standard dynamic,
general equilibrium models.1 We find that technology shocks affect macroeconomic variables
very much as a student of real business cycle theory might have anticipated. A positive
technology shock drives output, investment, consumption and employment up. In the case
of the first two variables, the effect is permanent. There are nevertheless three surprises in
our results.

1We have in mind models like those in Christiano (1988), King, Plosser, Stock and Watson
(1991) and Christiano and Eichenbaum (1992). These models incorporate technology shocks that
have a unit root, along the lines suggested by the empirical analysis in Prescott (1986). The
models have the property that technology shocks are the only disturbance that has a permanent
impact on labor productivity. If these real business cycle models were modified to incorporate
permanent shocks to the preference for leisure (as advocated in Francis and Ramey (2001)) or
to government spending, these shocks would have no long run impact on labor productivity,
because this is determined by the discount rate and underlying rate of growth of technology.
Although there are many models that satisfy our identification assumption, it is not hard

to think of models that do not satisfy it. For example, persistent shocks to the household
discount rate will have a persistent impact on labor productivity. Similarly, any model that
incorporates endogenous technical change will cause all shocks to have a long-run impact on
labor productivity.
The previous observation is just a special case of the general fact that identifying restrictions

can never be justified purely on a priori grounds. Ultimately, one builds confidence in them
based on how far they take us in understanding the data.
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First, the results differ sharply from what is reported in the existing literature, which
argues that employment drops persistently after a positive technology shock. Our prelimi-
nary analysis of the differences suggests that the results in the existing literature primarily
reflect distortions arising from omitted variable bias. To some extent, they also reflect distor-
tions due to overdifferencing of employment data. Second, we find that although technology
shocks contribute substantially to the lower frequency component of output fluctuations,
they contribute relatively little to business cycle variation. Here, we hasten to emphasize
that the results are based on analysis of a particular type of technology shock, one that has
a permanent impact on labor productivity. As explained in the paper, in later drafts we will
include other shocks to technology, and these will give us a more complete picture of the
role of technology in business cycles. Until then, our provisional conclusion is that shocks
to technology are not an important source of cyclical variation. In this respect, our finding
corroborates the findings of the existing empirical literature on technology shocks.
Third, we find that the reason the economy responds to technology shocks the way it

does has to do with monetary policy. In our reduced form estimates, monetary policy is
accommodative to positive technology shocks in that money growth rises in response. The
dynamic general equilibrium model that we estimate suggests that if the monetary authority
did not permit money growth to be accommodative, employment would fall in response to
a positive technology shock.
The following section lays out the dynamic, general equilibrium model used in the anal-

ysis. Section 3 discusses the estimation of impulse response functions. Section 4 reports
results of fitting our general equilibrium model to the impulse response functions. Section 5
concludes.

2. A Dynamic, General Equilibrium Model

Following is a description of the model used in the analysis. The model builds on the one in
Christiano, Eichenbaum and Evans (2001) (CEE). That model incorporates a single shock, a
disturbance to monetary policy. The model used in our analysis allows for 8 shocks, including
a shock to monetary policy. The discussion of this section highlights the key features of the
model, including the shocks, and explains the rationale for each. The 8 shocks in the model
correspond to 3 financial market shocks and 5 non-financial market shocks. The latter include
three shocks to technology: a permanent and a temporary shock to the aggregate goods-
producing technology, and a transient shock to the productivity of investment. In addition,
we include shocks to the market power of intermediate good firms and to the market power
of household suppliers of differentiated labor services. The three financial market shocks
include a monetary policy shock, a shock to household money demand and a shock to firm
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money demand. Monetary policy is endogenous, in that the control variable of the monetary
authority - the aggregate stock of money - is permitted to respond to all shocks.
The shocks have been incorporated into our quantitative model, and in a later section

we describe an econometric procedure for identifying and estimating the model and shock
parameters jointly. However, at this time we have only estimated the version of the model
with two shocks, a shock to the technology of goods-producing firms which has long-run
effects and the shock to monetary policy. A later draft will incorporate results for more
shocks.
In what follows we first describe the firm sector. We then describe the household sector

and equilibrium.

2.1. Firms

Final goods are produced by competitive firms who use a continuum of intermediate goods
along the lines of Dixit and Stiglitz:

Yt =
·Z 1

0
Yjt

1
λf,t dj

¸λf,t
,

where λf,t is a stochastic process, and λf,t ∈ [1,∞). For estimation purposes, in this draft
of the paper this shock is simply fixed at its mean value, λf . The price of the final good is
Pt and the price of the i

th intermediate good is Pit. In the usual way, competition and profit
maximization lead to the following relationship between these prices:

Pt =

"Z 1

0
P

1
1−λf,t
jt dj

#(1−λf,t)
. (2.1)

The shock, λft, shows up as a disturbance to the reduced form pricing equation of the model.
Empirical analyses of inflation often find it important to include such a shock.2

Each intermediate good, i ∈ (0, 1) is produced by a monopolist using the following
production function:

Yit =

(
²t (zt)

1−αKα
itX

1−α
it − z∗t φ if (zt)

1−αKα
itX

1−α
it ≥ z∗t φ

0, otherwise
(2.2)

where zt is a persistent shock to technology, ²t is a stationary shock to technology, and Kit,
Xit represent capital and labor services, respectively. In this draft of the paper, we set ²t ≡ 1.
We assume

xt = log zt − log zt−1.
2References for this to be added here.
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where

xt = (1− ρx)x+ ρxxt−1 + εxt, x > 0. (2.3)

We include a fixed cost in (2.2) to ensure that profits are not too big in equilibrium. We
set the fixed cost parameter, φ, so that profits are zero along a nonstochastic steady state
growth path. The fixed costs are modeled as growing with the exogenous variable, z∗t :

z∗t = ztΥ
( α
1−α t),Υ > 1.

If fixed costs were not growing, then they would eventually become irrelevant. We specify
that they grow at the same rate as z∗t , which is the rate at which equilibrium output grows.
Note that the growth of z∗t exceeds that of zt. This is because we have another source of
growth in this economy, in addition to the upward drift in zt. In particular, we posit a trend
increase in the efficiency of investment. We discuss this further below.
Intermediate good producers are competitive in the market for capital and labor services,

and so they take factor prices as given. Given our specification of technology in (2.2),
marginal cost is the same for each firm, and independent of the scale of production. Let st
denote the ratio of marginal cost to the aggregate price level. Then,

st =
µ

1

1− α

¶1−α µ 1
α

¶α
Ã
Rkt
Pt

!α µ
Wt

Pt
Rft

¶1−α
,

where Rkt denotes the rental rate of capital and Wt is the wage rate, both denominated in

currency units. The gross nominal rate of interest, Rft , appears here because intermediate
good firms are assumed to have to borrow a fraction, νt, of their wage bill at the beginning
of the period, and repay it at the end, when sales receipts come due. The gross nominal rate
of interest at which they borrow is Rt, so that

Rft = νtRt + 1− νt.

In a later draft, νt will be treated as a stochastic process. For now, we suppose that νt ≡ 1.
Intermediate good firms face price frictions using a modified version of the model in Calvo

(1983). In particular, each period a randomly selection fraction of firms, 1− ξp, is permitted
to reoptimize its price. The ith firm among the ξp firms that do not reoptimize sets its price
in the following way:

Pit = πt−1Pi,t−1,

where πt = Pt/Pt−1 denotes the aggregate rate of inflation. Each intermediate good firm
must satisfy its demand curve in each period. Optimizing firms discount future cash flows
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using the household’s discount rate, β ∈ (0, 1).3 This pricing behavior by firms, together
with (2.1), leads to the following representation of inflation:

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Etπ̂t+1 +

(1− βξp)(1− ξp)

(1 + β) ξp
Et
h
ŝt + λ̂f,t

i
,

where a ‘ˆ’ over a variable indicates percent deviation from steady state.4

2.2. Households

The jth household discounts future consumption, Ct, labor, hj,t, and real balances, Qt/Pt,
using the following preferences:

Ejt

∞X
l=0

βl

u(Ct+l − bCt+l−1)− ψL,t
2
(hj,t)

2 + ψq,t

µ
Qt+l

z∗
t+lPt+l

¶1−σq
1− σq


When b > 0, household preferences for consumption are characterized by habit persistence.
This specification of preferences is standard in the monetary economics literature because it
helps account for the hump-shaped response of consumption to monetary policy shocks. In
addition, this specification has proved useful for understanding features of asset prices (see
Boldrin, Christiano and Fisher (2001).) The terms, ψL,t and ψq,t, represent stochastic shocks
to preferences for leisure and real balances, respectively. In this draft of the paper, these
variables are simply held constant.5

The jth household is the only supplier of a differentiated labor service, hjt. It sets its
wage rate, Wjt, following a modified version of the setup in Erceg, Henderson, Levin (2000).
This in turn follows the spirit of the price setting frictions in Calvo (1983). In each period,
1− ξw households are randomly selected to reoptimize their wage. The j

th household among
ξw who cannot reoptimize, set their wage according to

Wjt = πt−1xtWjt−1.

3They actually do so using the Arrow-Debreu date and state-contingent prices. In equilib-
rium, these involve not just β, the household’s discount factor, but also the marginal utility
of consumption. However, with our linearization procedure (we use a standard procedure) the
marginal utility of consumption drops out.

4In the case of λ̂f,t, this will be modeled as a zero mean, univariate time series process.
5From the point of interpreting ψL,t, it is interesting to note that this shock is observationally

equivalent to a shock λw, a variable discussed below which measures the degree of labor market
power that the household has.
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Thus, non-optimizing households index their wage rate to the aggregate inflation rate, as do
non-optimizing firms. In addition, non-optimizing households also add a technology growth
factor to their wage. Households are required to be on their demand curve in each period.
Demand for household labor derives from a competitive, representative ‘labor contractor’
who takes hj,t, j ∈ (0, 1), as input and produces aggregate, homogeneous labor services
using the following production function:

Xt =
·Z 1

0
(hj,t)

1
λw dj

¸λw
, 1 ≤ λw <∞.

The labor contractor takes the price of labor services, Wt, as given, as well as the price of
the jth differentiated labor input.
The term, ψL,t, in the utility function is a disturbance to the preference for leisure. In the

linearized solution to the model, λw and ψL,t appear symmetrically, so we are free to interpret
ψL,t as a shift in the market power of workers. Various authors, including Shapiro andWatson
(1988), Hall (1991), and Francis and Ramey (2001), have argued for the importance of these
shocks as a source of business cycle fluctuations.
Note that we do not index Ct and Qt in the utility function by j. In principle, different

households would make different consumption and portfolio decisions because they differ in
their labor market experiences. We rule out this sort of heterogeneity by the assumption
that households have access to the appropriate insurance contracts.
Households own the physical stock of capital, K̄t. They make the investment decisions,

It, which impact on the stock via the following capital accumulation technology:

K̄t+1 = (1− δ)K̄t + µΥ,tΥ
t [1− S(It/It−1)] It. (2.4)

The term in square brackets reflects the presence of costs of adjusting the flow of investment.
We suppose that S and its derivative are zero along a steady state growth path for the
economy. The second derivative of this function in steady state, S00 > 0, is a parameter
that we estimate. We place adjustment costs on the change of investment, rather than, say,
the level, to enable the model to account for the hump-shaped response of investment to a
monetary policy shock.
The terms multiplying the square brackets in (2.4) represent an exogenous process gov-

erning the evolution of the efficiency of investment. There is a positive trend in this term,
since Υ > 1. This term gives rise to a trend fall in the relative price of capital goods, Pk0,t, in
our model economy. It captures the trend increase in the efficiency of investment that Green-
wood, Hercowitz and Krusell (1998) argue is a key engine of growth for the US economy.
The other term, µΥ,t, is a stationary stochastic disturbance to the efficiency of investment.
Greenwood, Hercowitz and Krusell (1998a) argue that this is an important source of business
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cycle fluctuations in the US. In this draft of the paper, we set µΥ,t ≡ 1. In a later draft,
when we estimate µΥ,t, we will be able to evaluate the Greenwood, Hercowitz and Krusell
(1998a) claim.
Households control the amount of capital services supplied to the capital services market

by choosing the utilization rate of capital. In particular, capital services are determined
according to:

Kt = utK̄t.

To ensure that ut is finite, we suppose that the household faces convex costs, in terms of
final goods, of increasing utilization, in the form:

a(ut)Υ
−tK̄t.

We suppose that a = 0 along a steady state growth path (when ut = 1) and we set a0 in
steady state to the scaled, real rental rate of capital. A free parameter for estimation is
a00/a0 > 0, where a00 is the second derivative of a, evaluated at ut = 1. Note that for a given
rate of utilization, ut, and stock of capital, K̄t, the cost of utilization falls over time. This
is to ensure that the model has a balanced growth steady state, one in which hours worked,
capital utilization and various ‘great ratios’ are constant.6 If the term were not present,
the fact that the growth rate of capital is relatively rapid would imply that utilization costs
would grow too fast in steady state to be consistent with ut = 1.
The presence of variable capital utilization in the model, by causing the supply of capital

services to be elastic, helps damp the response of marginal costs to a monetary policy shock.
This in turn is key for the model’s ability to account for the inertial response of inflation
to a monetary policy shock. The assumption that utilization costs are denominated in
goods helps assure that capital utilization rises after a positive monetary shock. In several
computational experiments in which utilization costs take the form of increased depreciation
of physical capital, we have found that capital utilization has a tendency to drop after a
positive monetary policy shock. This is because a positive monetary shock leads to a rise in
physical investment which, via the adjustment costs, leads to a rise in the price of physical
capital. With capital more expensive, households find it desirable to reduce their utilization
of capital.
The household has a portfolio decision. At the beginning of the period, it is in possession

of the economy-wide stock of high-powered money, Mt. It splits this between deposits with
a financial intermediary and Qt. The deposits at the financial intermediary are combined
with a money injection from the central bank, and loaned on to firms who need the funds

6By the great ratios, we mean the ratio of the consumption good value of capital to output
and the ratio of consumption to output.

8



to finance their wage bill. The interest received by the financial intermediary on its loans
is transferred to households at the end of the period. Households are willing forego interest
earnings to hold Qt, because Qt generates services that are captured in the last term in
square brackets in the utility function. The exogenous shifter, z∗t , in the utility function
guarantees that, in a steady state growth path, the ratio of Qt/Pt to output is constant.

2.3. Monetary Authority

We adopt the following specification of monetary policy:

µ̂t = µ̂+ µ̂p,t + µ̂x,t, (2.5)

where µ̂t represents the growth rate of high powered money, Mt. We model µ̂p,t and µ̂x,t as
follows:

µ̂p,t = ρµpµ̂p,t−1 + εµp,t (2.6)

µ̂x,t = ρµxµ̂x,t−1 + cµxεx,t

Here, εµp,t represents a shock to monetary policy and we suppose that the response of money
growth to this is characterized as a scalar first order autoregression. The term, µ̂x,t, captures
the response of monetary policy to an innovation in technology, εx,t. The contemporane-
ous response is governed by the parameter, cµx. The dynamic response of µ̂x,t to εx,t is
characterized by a first order autoregression. Initially, we worked with more elaborate pa-
rameterizations of µ̂p,t and µ̂x,t. However, we found that the simple representations in (2.6)
are adequate in practice.
In the discussion above, we have described 6 additional shocks: a shock to household

money demand, ψq,t, a shock to firm money demand, νt, a shock to household preferences
for leisure (or, equivalently, to their degree of labor market power), ψL,t, a stationary shock
to technology, ²t, an investment-specific technology shock, µΥ,t, and a shock to intermediate
good firm market power, λft. For now, these shocks are held constant. When they are
non-trivial stochastic processes, we will add six additional terms to the representation of
monetary policy, (2.5), one corresponding to the monetary policy response to each shock.

2.4. Timing, Market Clearing and Equilibrium

We adopt the following timing specification in the model. At the beginning of the period,
the non-financial market shocks are realized. Then, prices and wages are set and households
make their consumption, investment and capital utilization decisions. After this, the financial
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market shocks are realized. Then, households make their portfolio decision, goods and labor
markets meet and clear, and production investment and consumption occur.
Clearing in the goods market requires:

Ct + It ≤ Yt − a(ut)Υ−tK̄t,

where Yt is the output of final goods. The measure of final goods and services that we compare
with aggregate output in the data is Ct + It. Clearing in the money market requires:

WtXt =Mt −Qt + (1 + µ̂t)Mt.

The demand for funds appears on the left, and the supply appears on the right.
We adopt a standard sequence-of-markets equilibrium concept. The equilibrium prices

and quantities in the model can be represented as follows:

Ct = ctz
∗
t

It = itz
∗
t

Yt = ytz
∗
t

K̄t+1 = k̄t+1z
∗
tΥ

t

Rkt = PtΥ
−trkt

Pk0,t = Υ−tpk0,t
Wt = Ptz

∗
twt.

Here, lower case variables to the right of the equality are covariance stationary and converge
to constant steady state values when all shocks are held at their unconditional mean values.
Also, Pk0,t is the price of K̄t+1 at time t, in consumption goods units. According to these
expressions, consumption, investment, output and the real wage grow at the rate of growth
of z∗t . The value, in consumption units, of the physical stock of capital also grows at the rate
of growth of z∗t . However, its relative price falls over time and the growth rate of the physical
quantity of capital is greater than the growth rate of z∗t . These balanced growth properties
of our model are just the properties of Solow’s model of investment specific technical change,
recently emphasized by Greenwood, Hercowitz and Krusell (1998). An interesting feature
of these properties is the logarithm of the growing variables are a linear combination of a
unit root process, zt, and a deterministic time trend, log(Υ)t. In practice, the literature
emphasizes the possibility of one type of process, or the other, but not both.
For numerical analysis, we approximate the model’s solution by linearizing the first order

conditions and identities that characterize equilibrium about the non-stochastic steady state
values of the scaled variables. We apply standard solution methods to the resulting linear
system (see Christiano (2002).)
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3. Estimation of Impulse Response Functions

We first briefly describe the data. We then describe how we go about estimating impulse
responses to shocks using Vector Autoregressions. We report findings for the dynamic effects
of monetary policy shocks and for a permanent shock to technology. The dynamic effects
to a monetary policy shock are similar to what has been reported before in Christiano,
Eichenbaum and Evans (1999, 2001). This in itself is a notable finding, because of its
implications for robustness. Although the basic recursiveness assumption on monetary policy
is used in all these settings, other details about the estimation vary substantially. These
include the list of variables used in the analysis, the estimation period and whether the data
are assumed to be trend stationary or difference stationary. Through all these applications,
the basic qualitative nature of the results is always the same.
Turning to the analysis of the consequence of the permanent shock to technology, our

results are in some respects surprising. In particular, we find that the response to a tech-
nology shock corresponds roughly to what a student of real business cycles would expect:
hours worked, investment, consumption and output all increase. This finding is surprising
because it conflicts with a recent literature which argues that hours worked actually fall after
a positive shock to technology. We devote some space to reconciling our results with those
in this literature. Our preliminary results suggest the possibility that the findings of this
literature are consistent with the hypothesis that they are an artifact of over differencing
the data. Whether this is the most plausible hypothesis is something that we are currently
studying.

11



3.1. Data

The data used in the analysis were taken from the DRI Basic Economics Database.7 In our
analysis, we require that productivity growth, the interest rate, inflation, the log consumption
to output ratio, log(c/y), the log investment to output ratio, log(i/y), log capacity utilization,
log per capita hours worked, the log of the productivity to real wage ratio (log(y/h)-log(w))
and the log of M2 velocity all be stationary. These variables are graphed in Figure 1.
Thin lines indicate the raw data. For the most part, the data appear consistent with our
stationarity assumption. One exception is velocity which rises very sharply in the 1990s. We
detrended these data prior to analysis using a linear trend. The detrended data are indicated
by the thick line. The other data were used without further transformation. The notion that
the data (including detrended velocity) are covariance stationary receives support from the

7The data were taken from http://economics.dri-wefa.com/webstract/index.htm. Nominal
gross output is measured byGDP, real gross output is measured by GDPQ (real, chain-weighted
output). Nominal investment is GCD (household consumption of durables) plus GPI (gross
private domestic investment). Nominal consumption is measured by GCN (nondurables) plus
GCS (services) plus GGE (government expenditures), money is measured by FM2. These
variables were converted into per capita terms by P16, a measure of the US population over
age 16. A measure of the aggregate price index was obtained from the ratio of nominal to
real output, GDP/GDPQ. Capacity utilitzation is measured by IPXMCA the manufacturing
industry’s capacity index (there is a measure for total industry, IPX, but it only starts in 1967).
The interest rate is measured by the federal funds rate, FY FF. Hours worked is measured by
LBMNU (Nonfarm business hours). Hours were converted to per capita terms using our pop-
ualtion measure. Nominal wages are measured by LBCPU, (nominal hourly non-farm business
compensation). This was converted to real terms by dividing by the aggregate price index.
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estimated parameters of our VAR, which satisfy stationarity.

Figure 1
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3.2. Impulse Response Functions: How We Compute Them

We adopt standard strategies for identifying monetary policy and technology shocks. To
identify monetary policy shocks, we adopt the recursive method pursued in CEE. To identify
innovations to technology, we adopt the strategy in Gali (2001), Gali, Lopez-Salido, and
Valles (2002) and Francis and Ramey (2001). In particular, we suppose - as is true in our
model - that innovations to technology are the only shock that affects the level of labor
productivity in the long run.8 To identify the remaining six shocks, we developed a method
of identification which we call ‘model-based’. We use the restrictions implied by the model
itself to do identification, using a method that is inspired by the strategy pursued recently
by Uhlig (2001). Our approach differs from Uhlig’s in that he imposes a priori sign and
shape restrictions, while we impose the restrictions of the model.
We now discuss the calculations of the impulse response functions using the data just

described. Consider the following reduced form vector autoregression:

Yt = α+B(L)Yt−1 + ut, (3.1)

Eutu
0
t = V

The ‘fundamental’ economic shocks, et, are related to ut by the following relation:

ut = Cet, Eete
0
t = I.

To obtain the dynamic response function to, say, the ith fundamental shock, eit, we need
B(L) and the ith column of C, Ci, and we simulate:

Yt = B(L)Yt−1 + Cieit. (3.2)

This section discusses how we compute B(L) and Ci for the shocks we wish to identify.

8It is of course easy to imagine models in which all shocks have a permanent impact on
productivity. For example, an endogenous growth model in which shocks lead to a transitory
change in the rate of growth of technology has such a property. Any set of identification
assumptions can be challenged on a priori grounds, and ours are no exception. Ultimately, a
defense of any particular set of identification assumptions is determined by how far one can go
with them in explaining empirical observations. Considerably more experience is needed before
we can say with confidence what sort of identification assumptions are useful for understanding
business cycle observations. This paper is part of a broader research program involving many
other researchers that attempts to build the necessary experience.
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In the analysis, Yt is defined as follows:

Yt|{z}
9×1

=



∆ ln(GDPt/Hourst)
∆ ln(GDP deflatort)
capacity utilitzationt

ln(GDPt/Hourst)− ln(Wt/Pt)
ln(Hourst)
ln(Ct/GDPt)
ln(It/GDPt)

Federal Funds Ratet
ln(GDP deflatort) + ln(GDPt)− ln(M2t)



=



∆yt|{z}
1×1
Y1t|{z}
6×1
Rt|{z}
1×1
Y2t|{z}
1×1


.

We partition et conformably with the partitioning of Yt :

et =



εxt|{z}
1×1
e1t|{z}
6×1
εt|{z}
1×1
e2t|{z}
1×1


.

An alternative representation of our system is given by the structural form:

A0Yt = A(L)Yt−1 + et. (3.3)

The parameters of the reduced form are related to those of the structural form by:

C = A−10 , B(L) = A
−1
0 A(L). (3.4)
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We obtain impulse responses by first estimating the parameters of the structural form, then
mapping these into the reduced form, and finally simulating (3.2). We specify the VAR
to have four lags, so that A(L) = A1 + A2L + A3L

2 + A4L
3. Our data are quarterly and

cover the period is 1959QI - 2001QIV (the estimation period drops the first 4 quarters, to
accommodate the 4 lags).
The following two subsections consider first, identification of the monetary policy and

technology shocks, and then identification of the other shocks.

3.2.1. Restrictions on Monetary Policy and Technology Shocks

We assume policy makers manipulate the monetary instruments under their control in order
to ensure that the following interest rate targeting rule is satisfied:

Rt = f(Ωt) + εt, (3.5)

where εt is the monetary policy shock. We interpret this as a kind of ‘reduced form’ Taylor
rule. Conventional representations of the Taylor rule include a smaller set of variables than
we do. Typically, these ‘structural representations’ of the Taylor rule include expected
future inflation and the output gap. We interpret our (3.5) as a convolution of the structural
representation of the Taylor rule with the (linear) functions which relate the variables in the
structural Taylor rule to the variables in our VAR. By representing the Taylor rule in this
way, we sidestep difficult and controversial questions, such as how it is that the monetary
authorities actually compute the output gap. To ensure identification of the monetary policy
shock, we assume f is linear, Ωt contains Yt−1, Yt−2, Yt−3, Yt−4 and the only date t variables
in Ωt are the ones above Rt in Yt. Finally, we assume that εt is orthogonal with Ωt. It is
easy to verify (see, e.g., Christiano, Eichenbaum and Evans (1999)) that these identifying
assumptions correspond to the following restrictions on A0 :

A0 =



A1,10
1×1

A1,20
1×6

0
1×1 0

1×1
A2,10
6×1

A2,20
6×6

0
6×1 0

6×1
A3,10
1×1

A3,20
1×6

A3,30
1×1

0
1×1

A4,10
1×1

A4,20
1×6

A4,30
1×1

A4,40
1×1


. (3.6)

To understand this, consider first the second to last row of A0. This row corresponds to the
monetary policy rule, (3.5), and the zero in this row reflects that the monetary authority
does not look at the last variable in Yt. Now consider the first 7 rows. The right two columns
reflect our assumption that a monetary policy shock has no contemporaneous impact on ∆yt
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or Y1t. The two sets of zeros reflect the two distinct channels by which this impact could
occur. The second to last column of zeros reflects that the interest rate cannot enter directly
into the first set of 7 equations. The second reflects that the interest rate cannot also enter
indirectly, via its contemporaneous impact on the last variable.
The assumption that only the technology shock has a non-zero impact on the level of

output at infinity implies that the matrix

A0 −A(1), (3.7)

has all zeros in its first row, except the 1,1 element, which could potentially be non-zero. To
see this, note that the impact of the vector of shocks on the level of yt at t =∞ corresponds
to the first row of [A0−A(1)]−1. Thus, our long-run restriction is that only the first element
in the first row may be non-zero, while the others are zero. But, this is true if, and only if,
the same restriction is satisfied by (3.7).
It is useful to write out the equations explicitly, taking into account the restrictions

implied by our assumptions about long-run effects, and by our assumptions about the effects
of a monetary policy shock:

∆yt = a∆y(L)∆yt−1 + ã1(L)∆Y1t + ãR(L)∆Rt−1 + ã2(L)∆Y2,t−1 +
εxt

A1,10
,

where ∆ = (1− L), and the polynomial lag operators correspond to the relevant entries of
the first row of A0 − A(L)L, scaled by A1,10 . Note that among the right hand variables in
this expression, the only one whose current value appears here is ∆Y1t. This fact rules out
ordinary least squares as a strategy for obtaining a consistent estimate of the coefficients in
this equation, because we expect εxt to be correlated with ∆Y1t. An instrumental variables
method can be constructed based on the insight that lagged variables are correlated with
∆Y1t, but not with εxt. Suppose that an initial consistent estimate of the coefficients have
been obtained in this way. The coefficients in the first row of the structural form can then be
obtained by scaling the instrumental variables estimates up by A1,10 , where A

1,1
0 is estimated

as the (positive) square rood of the variance of the fitted disturbances in the instrumental
variables relation.
The next set of 6 equations can be written as follows:

A2,10 ∆yt +A
2,2
0 Y1t = b(L)Yt−1 + e1t (3.8)

The following equation is just the policy rule:

Rt +
A3,10
A3,30

∆yt +
A3,20
A3,30

Y1t = c(L)Yt−1 +
εt

A3,30
.
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Consistent estimates of the parameters in this expression may be obtained by ordinary least
squares with Rt as the dependent variable, by our assumption that εt is not correlated with
∆yt and Y1t. The parameters of the 8

th row of the structural form are obtained by scaling
the estimates up by A3,30 , where A

3,3
0 is estimated as the positive square root of the variance

of the fitted residuals. Finally, according to the last equation:

Y2t +
A4,10
A4,40

∆yt +
A4,20
A4,40

Y1t +
A4,20
A4,40

Rt = d(L)Yt−1 +
e2t

A4,40
.

The coefficients in this relation can be estimated by ordinary least squares. This is because
e2t is not correlated with the other contemporaneous variables in this relation. This reflects
that Y2t does not enter any of the other equations. The parameter, A

4,4
0 , can be estimated as

the square root of the estimated variance of the disturbances in this relation. The parameters
in the last row of the structural form are then estimated suitably scaling up by A4,40 .
The previous argument establishes that the 1st, 8th and last rows of A0 are identified.

The block of 6 rows in the middle are not identified. To see this, let w denote an arbitrary
6 × 6 orthonormal matrix, ww0 = I6. Suppose Ā0 and Ā(L) is some set of structural form
parameters that satisfies all our restrictions. Let the orthonormal matrix, W , be defined as
follows:

W =



1 0
1×6

0 0

0
6×1

w
6×6 0

6×1 0
6×1

0 0
1×6

1 0

0 0
1×6

0 1

 . (3.9)

It is easy to verify that the reduced form corresponding to the parameters, WĀ0, WĀ(L)
also satisfies all our restrictions, and leads to the same reduced form:

Yt =
³
WĀ0

´−1
WĀ(L)Yt−1 +

³
WĀ0

´−1
Wet.

To see this, note: ³
WĀ0

´−1
WĀ(L) = Ā−10 W

0WĀ(L) = Ā−10 Ā(L)

E
³
WĀ0

´−1
Wutu

0
tW

0
·³
WĀ0

´−1¸0
= EĀ−10 W

0Wete0tW
0 hĀ−10 W 0i0

= EĀ−10 W
0Wete0tW

0W
³
Ā−10

´0
= Ā−10 W

0WW 0W
³
Ā−10

´0
= Ā−10

³
Ā−10

´0
.
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Recall that impulse response functions can be computed using the matrices in B(L) and the
columns of A−10 . It is easy to see that the impulse responses to εxt, εt and e2t are invariant
to w. This is because: ³

WĀ0
´−1

= Ā−10 W
0.

It is easily verified that the first, 8th and last columns of Ā−10 W 0 coincide with those of Ā−10 .
We conclude that there is a family of observational equivalent parameterizations of the

structural form, which is consistent with our identifying assumptions on the monetary policy
shock and the technology shock. We arbitrarily select an element in this family as follows.
Let Q and R be orthonormal and lower triangular (with positive diagonal terms) matrices,
respectively, in the QR decomposition of A220 . That is, A

22
0 = QR. This decomposition is

unique and guaranteed to exist given that A220 is non-singular, a property implied by our
assumption that A0 is invertible. The reasoning up to now indicates that we may, without
loss of generality, select A0 so that A

22
0 is lower triangular with positive diagonal elements.

This restriction does not restrict the reduced form in any way, nor does it restrict the set of
possible impulse response functions associated with εxt, εt or e2t.
Thus, in (3.8) A220 is lower triangular. We seek consistent estimates of the parameters of

(3.8), with this restriction imposed. Ordinary least squares will not work as an estimation
procedure here because of simultaneity. To see this, consider the first equation in (3.8).
Suppose the left hand variable is the first element in Y1t. The only current period explanatory
variable is ∆yt. But, note from the first equation in the structural form that ∆yt responds
to Y1t and, hence, to the innovations in Y1t. That is, ∆yt is correlated with the first element
in e1t. We can instrument for ∆yt using εxt, the (scaled) residual from the first structural
equation. Clearly, this variable is correlated with ∆yt, and not with the first element in e1t.
Now consider the second equation in (3.8). Think of the left hand variable as being the

second variable in Y1t. The current period explanatory variables in that equation are ∆yt and
the first variable in Y1t. Both these are correlated with the second element in e1t. To see this,
note that a disturbance in the second element of e1t ends up in ∆yt via the first equation
in the structural form, because Y1t appears there. This explains why ∆yt is correlated with
the second element of e1t. But, the first element in Y1t is also correlated with this variable
because ∆yt is an ‘explanatory’ variable in the equation determining the first element in Y1t,
i.e., the first equation in (3.8). So, we need an instrument for ∆yt and the first element of Y1t.
For this, use εxt and the residual from the first equation in (3.8). Thus, moving down the
equations in (3.8), we use as instruments εxt and the disturbances in the previous equations
in (3.8).
With A0 and A(L) in hand, we are now in a position to compute the reduced form, using

(3.4). In that reduced form, we find it convenient to refer to the shocks, e1t, as Choleski
shocks, because of the lower triangular normalization that underlies them. The dynamic
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response of Yt to technology and monetary policy shocks may be computed by simulating
(3.2) with i = 1, 8, respectively.

3.2.2. Model-Based Identification of Other Shocks

We now consider identification of other shocks in the model. The previous subsection dis-
cussed the computation of A0 and A(L) with the normalization that A

22
0 is lower triangular

and imposing our assumptions on monetary policy and technology shocks. From that dis-
cussion, we know that if W is an orthonormal matrix with structure (3.9), then WA0 and
WA(L) is another parameterization of the structural form which satisfies the identification
assumptions on monetary policy and technology shocks. That parameterization replaces
the Choleski shocks, e1t, with a linear combination, We1t. The new vector of shocks, We1t,
has a different set of impulse response functions. The idea of model-based identification
is to search over all possible such shocks, to identify the orthonormal rotation matrix, say
W ∗, such that the dynamic response in the VAR to W ∗e1t resembles the model’s dynamic
responses to shocks other than εxt, εt and e2t. Our metric for making precise ‘resembles’ is
discussed further below.
The discussion in the previous paragraph supposes that we wish to identify 6 additional

structural shocks based on rotations of the 6 Choleski shocks, e1t. However, in our work we
plan to start by identifying a smaller set of shocks, say three. To do this, we need to identify
a way to ‘ignore’ a subset of the shocks in e1t. One way to do this is to identify the elements
in the space of orthonormal rotations of e1t that corresponds to the principal components
of one or several of the variables in our analysis. We choose to focus on output. We call
the shocks associated with this rotation, the ‘principal component shocks’. Our new basis
of shocks is formed by the most important of the three principal component shocks. Our
method of identifying these shocks follows the approach taken in Uhlig (2002).
To explain the method, let w̃ denote a 6-dimensional column vector and consider the

linear combination of e1t, w̃
0e1t. Let a denote the 20 × 6 matrix containing the first 20

responses in the log level of output to the six Choleski shocks, e1t. Then, aw̃ denotes the
20× 1 column vector containing the first 20 responses of log output to the shock, w̃0e1t. We
seek a w̃ such that 20-quarter ahead forecast error variance in log output due to w̃0e1t is as
large as possible, subject to w̃0w̃ = 1. Since this forecast error variance is the sum of squares
of the elements in aw̃, the Lagrangian representation of the problem solved by w̃ is:

max
w̃
w̃0a0aw̃ − λ [w̃0w̃0 − 1] ,

where λ is the multiplier on the constraint. As is well known from the principal components
literature, the unique solution to this problem is the eigenvector associated with the largest

20



eigenvalue of a0a. Let this eigenvector of a be denoted w̃1. We now identify another column
vector, w̃, such that the 20-quarter ahead forecast error variance in log output due to w̃0e1t
is as large as possible, subject to w̃0w̃1 = 0 and w̃0w̃ = 1. Note that this shock is orthogonal
to w̃01e1t, the first principal component shock. The Lagrangian representation of the problem
solved by w̃ is:

max
w̃
w̃0a0aw̃ − λ [w̃0w̃ − 1]− µw̃01w̃,

where λ and µ are multipliers. It is well known that the unique solution to this problem is
the eigenvector, w̃2, associated with the second largest eigenvalue of a

0a. Proceeding in this
way, we obtain w̃3, ..., w̃6 as the eigenvectors associated with successively smaller eigenvalues
of a0a. Note that by construction, the matrix W formed from w0 = [w̃1, ..., w̃6] satisfies
orthonormality.
It is of interest to see what fraction of the 20-quarter ahead variance of output due to e1t

the principal component shocks, w̃ie1t, i = 1, ..., 6 explain. We found that the first principal
component shock, w̃1e1t, accounts for 66% of the variance of output at the 20 quarter horizon,
the second accounts for 25% and the third accounts for 7%. The other principal component
shocks taken together account for 2% or less.9 These results suggest that not much is lost by
simply focusing on orthogonal rotations of the first three principal component shocks. We
are doing this now and plan to report the results of identifying three additional fundamental
shocks in this way in the next draft. The three additional shocks are the other two technology
shocks and the preference for leisure shock.

3.3. Impulse Response Functions: The Results for Monetary Policy and Tech-
nology

The procedure defined in the previous section allows us to determine the dynamic response
to monetary policy and technology shocks independent of our dynamic equilibrium model.
This is not so for the other shocks. Our model-based identification procedure is interactive
with our model. The remainder of this section discusses results for policy and technology
shocks.
Figure 2 displays the response of our variables to a monetary policy shock. In each case,

there is a solid line in the center of a gray area. The gray area represents a 95% confidence
interval, and the solid line represents the point estimates.10 Note how all variables but
the interest rate and money growth show zero response in the period of the shock. This

9We repeated the calculations with log output replaced by log hours worked. The results
were essentially the same.
10The confidence intervals are constructed using standard error estimates of impulse responses

obtained using bootstrap simulations.
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reflects the identification assumption underlying our monetary policy shock. Note too, that
the variables displayed in Figure 2 are transformations of the variables in Yt, which are
displayed in Figure 1. In all cases but inflation and the interest rate, the variables are in
percent terms. Thus, the peak response of output is a little over 0.2 percent. The Federal
Funds rate is in units of basis points, at an annual rate. So, the policy shock produces a
60 basis point drop in the federal funds rate. Inflation is expressed at a quarterly rate. In
analyzing these results, we focus on the first 20 quarters’ responses.
There are six features worth emphasizing here. First, however one measures the policy

variable - whether by money growth or the interest rate - the policy variable has completed its
movement within about one year. The other variables respond over a longer period of time.
Clearly, any model that can explain these movements must exhibit a substantial amount of
internal propagation. Second, inflation takes nearly 3 years to reach its peak response. This
is a measure of the substantial inertia in this variable. Interestingly, the initial response of
inflation to the monetary expansion is a marginally significant negative fall. In the literature,
this has been referred to as the ‘price puzzle’, reflecting a presumption that no sensible
model could reproduce it. The importance of working capital in the monetary transmission
mechanism of the model, which causes the interest rate to enter marginal costs, ensures that
our model can in principle account for this.11 Third, output, consumption, investment, hours
worked and capacity utilization all display hump-shaped responses, that peak after roughly
one year. Fourth, there is a significant liquidity effect. That is, the results indicate that
to get the interest rate down, the policy authority must increase money growth.12 Fifth,
velocity moves in the direction naive theory would predict, falling with the initial fall in the

11The role of the working capital channel in providing a resolution to the price puzzle has
been emphasized by Barth and Ramey.
12In interpreting M2 as a policy variable, we implicitly assume that the monetary authority

can achieve any degree of control overM2 that it wishes by suitably manipulating bank reserves.
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interest rate. Finally, the real wage exhibits a strong positive response.

Figure 2: Impulse Responses to a Monetary Policy Shock
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Next we discuss the response of the economy to a positive technology shock. This is
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displayed in Figure 3. All responses are measured in the same units as in the previous
figures. By construction, the impact of the technology shock on output, labor productivity,
consumption, investment and the real wage can be permanent. Because the roots of our
estimated VAR are stable, the impact of technology on the variables whose levels appear
in Yt must be temporary. These variables include capacity utilization, hours worked and
inflation.
According to the results in Figure 3, the effect of a one-standard deviation positive

technology shock is to increase output by about one-half of one percent. The initial reaction
of capacity utilization and hours worked to a positive technology shock is (weakly) positive.
Overall, our point estimates of the response of variables to a technology shock corresponds
qualitatively to what a student of real business cycle models might expect. This contrasts
with recent papers in the literature, which report point estimates which suggest that the
labor input falls for a prolonged period of time in the wake of a positive technology shock.
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The next subsection discusses the relationship between our work and this literature.

Figure 3: Impulse Responses to an Innovation in Technology
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We now discuss the decomposition of variance of our two variables. The percent of
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forecast error variance due to monetary policy shocks, at horizons 1, 4, 8, 12 and 30 quarters,
is reported in Table 1. The final column, labeled HP, reports the percent of the variance in
business cycle frequencies due to monetary policy shocks. We compute this by first simulating
the VAR driven only by the estimated monetary policy shocks, and computing the variance
of the simulated data after applying the Hodrick-Prescott (HP) filter. Second, we computed
the analogous variance based on data simulated using all the shocks. The ratio of the two
variances is our estimate of the fraction of business cycle variation due to monetary policy
shocks.
The key finding is that the monetary policy shock accounts for only a trivial component

of the data. For example, it accounts for only about 7.7 percent of the business cycle
component of output. Of course, this is not to say that monetary policy is not important for
understanding aggregate fluctuations. The nature of the monetary policy rule may be very
important for determining the way the economy responds to non-monetary policy shocks.
In addition, because the confidence intervals for the response to monetary policy shocks are
fairly narrow, estimated responses to monetary policy shocks contain a substantial amount
of information about the parameters of our equilibrium model. We will see this later on.

Table 1: Contribution of Monetary Policy Shocks to Variance
Variable Forecast Variance at Indicated Horizon Business Cycle Frequencies

1 4 8 12 30 HP

Output 0.0 3.1 5.4 4.4 2.5 7.7
M2 Growth 6.2 6.5 6.0 5.4 5.1 7.0
Inflation 0.0 1.7 1.8 3.4 4.4 4.3
Fed Funds 65.2 21.0 12.5 11.0 9.1 20.3
Capacity Util 0.0 2.6 7.2 5.6 4.4 6.7
Average Hours 0.0 1.9 5.0 5.1 6.0 7.2
Real Wage 0.0 0.2 0.9 1.3 3.2 1.1
Consumption 0.0 3.3 2.6 1.6 1.4 6.0
Investment 0.0 2.8 5.4 4.8 4.6 7.3
Velocity 2.3 2.1 1.1 0.9 0.8 3.3

The percent of forecast error variance due to technology shocks is displayed in Table 2.
Consider first the results pertaining to forecast error variances. The results indicate that
technology shocks are an important source of variation in aggregate output. They account
for nearly 50 percent of the forecast error variance at the 2 and 3 year horizons.13 Two other

13Of course, as the forecast horizon increases this percent converges to 100 percent by
construction.
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notable features of the results are that technology play a substantial role in inflation, even
at the 7 year horizon, and such a small role in hours and investment variation.
We now consider the results for business cycle frequencies. Two results stand out. First,

technology shocks account for a surprisingly small amount of the variance in the business cy-
cle component of output, employment and investment.14 Second, technology shocks account
for a surprisingly large amount of the business cycle variance in inflation.

Table 2: Contribution of Technology Shocks to Variance
Variable Forecast Variance at Indicated Horizon Business Cycle Frequencies

1 4 8 12 30 HP

Output 48.4 48.8 47.1 45.7 62.7 13.7
M2 Growth 2.8 3.8 4.1 3.8 5.7 4.6
Inflation 41.1 32.1 28.5 25.8 17.4 20.9
Fed Funds 0.4 0.5 0.6 0.8 5.7 1.1
Capacity Util 1.4 9.7 8.2 5.3 4.5 3.2
Average Hours 4.1 15.6 19.3 17.2 11.2 5.0
Real Wage 27.7 32.1 35.6 36.9 44.8 16.4
Consumption 61.0 67.4 65.3 65.3 69.9 24.7
Investment 9.8 14.5 14.1 11.8 12.2 5.5
Velocity 11.4 3.0 1.7 2.2 3.7 4.7

Another way to assess the role of the identified monetary policy and technology shocks in
driving the data, is presented in Figures 4-6. The thick line in Figure 4 displays a simulation
of the ‘detrended’ historical data. The detrending is achieved like this. First, we simulated
the estimated reduced form representation (3.1) using the fitted disturbances, ût, but setting
the constant term, α, and the initial conditions of Yt to zero. In effect, this gives us a
version of the data, Yt, in which any dynamic effects from unusual initial conditions (relative
to the VAR’s stochastic steady state) have been removed, and in which the constant term
has been removed. Second, the resulting ‘detrended’ historical observations on Yt are then
transformed appropriately to produce the variables reported in Figure 4. The high degree
of persistence observed in output in Figure 4 reflects that our procedure for computing it
makes it the realization of a random walk with no drift.
The procedure used to compute the thick line in Figure 4 was then repeated, with one

change, to produce the thin line. Rather than using the historical reduced form shocks, ût,
the simulations underlying the thin line use Cêt, allowing only the 1

st and 8th elements of

14In his discussion of an early draft of this paper, Adrian Pagan pointed out this feature of
our estimated technology shocks, before we had noticed it.
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êt to be non-zero. Here, êt is the estimated fundamental shocks, obtained from êt = C
−1ût.

The results in Figure 4 give a visual representation of what is evident in Tables 1 and 2: our
two shocks only account for about 50% of the fluctuations in the data.
Figure 4 also shows how well the shocks help to account for different frequencies of the

data, as well as how well they work at accounting for the fluctuations in different subperiods.
The shocks appear to do relatively well in the lower frequencies. In addition, technology and
policy shocks together do well at accounting for the movements in output up to the late
1970s and in the late 1990s. These shocks to not account for much of the variation in the
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data in the 1980s.

Figure 4: Detrended Historical Data (Thick Line) Versus Component
Due to Monetary Policy and Technology Shocks Alone (Thin Line)
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Figures 5 and 6 allow us to see how well our two shocks work individually at accounting
for the fluctuations in the data. The thin line in Figure 5 is the VAR’s estimates of what
history would have looked like if there had been only monetary policy shocks. Consistent
with the results in Table 1, the monetary policy shocks account for only a trivial amount of
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the variation in the data.

Figure 5: Detrended Historical Data (Thick Line) Versus Component
Due to Monetary Policy Shocks Alone (Thin Line)
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Figure 6 reports the analog of Figure 5, for the case of technology shocks. Consistent
with the results in Table 2, the VAR analysis indicates that technology shocks account for
a substantial portion of the fluctuations in the data. The portion of the data that it does
best on, is the low frequency component. For example, technology shocks appear to play
an important role in accounting for the rise and fall in output (relative to trend) before and
after the 1970s, and the rise in the late 1990s. They also go a long way towards capturing the
low frequency components of the consumption and investment data. Interestingly, it is not
clear that technology has very much to do with the business cycle component in the data.
Apart from the 1974 recession, technology shocks do not seem highly correlated with the
major business cycle fluctuations. In particular, the simulations completely miss the 1970
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recession, the recession in the early 1980s and the recession in the early 1990s.

Figure 6: Detrended Historical Data (Thick Line) Versus Component
Due to Technology Shocks Alone (Thin Line)
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To summarize, the evidence suggests that monetary policy shocks account for only a
trivial part of the variation in the data, while technology shocks account for nearly 50
percent of the variation. Although the role of technology shocks appears to be quantitatively
large, this role seems to be confined to explaining the relatively low frequency component
of the data. In particular, technology shocks appear to play only a small role in triggering
business cycle fluctuations. It is unclear at this point how to interpret this. A possibility
is that technology shocks have two components. One component has a long run impact on
productivity, and the other one has only a transitory impact. Our identification strategy,
as we have implemented it so far, may be effective at picking up the first one and not the
second.15 In addition, it is possible that stationary technology shocks that are specific to
the investment technology play an important role. They have not been included in our
empirical analysis yet. So, it is still possible that technology shocks play an important role
in driving the business cycle, if the driving force is stationary components of technology.
As noted above, the analysis of this paper is being extended to other shocks, including a
stationary shock to technology. When that analysis is completed we will hopefully have a
more complete assessment of the role of technology shocks in business cycles.
Finally, it is interesting to note how the confidence intervals on the responses to tech-

nology are relatively wide by comparison with the corresponding confidence intervals for
monetary policy shocks. This is particularly surprising in view of the fact that technology
shocks appear to play a much more important role in economic fluctuations than monetary
policy shocks. We suspect that the reason for this is fundamentally related to a weak in-
strument problem in our instrumental variables procedure for computing the response to
technology shocks.

3.4. Related Literature

There is a growing literature, started by Gali (1999), which attempts to identify the dynamic
effects of technology shocks using reduced form methods. In particular, Gali makes the
assumption - which we have adopted in our analysis - that innovations to technology are the
only disturbances that have an effect on the level of labor productivity in the long run. When
he did this, he obtained results very different from the ones we reported above. He found that
hours worked fall after a positive technology shock. The fall is so long and protracted that,

15We are still somewhat uncertain about the validity of this remark. To see what the issue
is, consider the technology shock, ²t (zt)

1−α
, in the intermediate good production function.

This has a univariate representation, which has a unit root. We suspect that the analysis
cannot distinguish between this univariate representation and the two univariate representations
separately, other than via the restrictions we have placed on the time series representations of
²t and zt.
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according to his estimates, technology shocks are a source of negative correlation between
output and hours worked. Reasoning from the observation that hours worked in fact are
procyclical, Gali concluded that some other shock or shocks must be playing the predominant
role in business cycles. Thus, he concludes that technology shocks at best play only a minor
role in fluctuations. Moreover, he argues that standard real business cycle models shed little
light on whatever small role they do play, because they do not generally imply a protracted
fall in employment after a positive technology shock. In effect, real business cycle models
are doubly dammed: they address things that are unimportant, and they do it badly at
that. Other recent papers reach conclusions that complement Gali’s in various ways (see,
e.g., Shea (1998), Basu, Kimball and Fernald (1999), and Francis and Ramey (2002).) In
view of the important role played by technology shocks in business cycle analyses of the past
two decades, Francis and Ramey perhaps do not overstate too much when they say (p.2)
that Gali’s argument is a ‘...potential paradigm shifter’.
Our results differ from those in the literature in that our point estimates imply a rise

in hours after a policy shock. Confidence intervals are wide, so the disagreement is not as
sharp as the point estimates themselves suggest. Still, there is disagreement. Regarding the
importance of technology shocks in the cycle, our results so far are qualitatively consistent
with Gali’s view that they are not important. However, for the reasons noted above, Gali’s
conclusion may not survive our analysis when we extend it to include other types of shocks
to technology.
The remainder of this section reports on our efforts to understand why we find that hours

rises after a technology shock, while others (primarily, Gali and Francis-Ramey) find that it
falls. The difference in results is perhaps surprising, since their fundamental identification
assumption - that shocks to technology are the only shocks that have a long-run impact on
labor productivity - is also adopted in our analysis. Still, there are a variety of differences
between our VARs and those used by Gali and Francis-Ramey. One difference is that the
number of variables used in the analysis differs. They tend to work with VARs with fewer
variables. So, one possibility is that their analyses suffer from omitted variables bias. Another
difference is that we include the (log) level of hours worked in Yt, while Gali and Francis-
Ramey tend to work in terms of the first difference of this variable. From the point of view
of our model, in which hours worked is stationary, first differencing is over-differencing. So,
to model Yt as a VAR with the growth rate of hours worked would constitute a specification
error from the standpoint of our model.16

Our preliminary results suggest that distortions due to omitted variables are the primary
reason for the difference in results. Overdifferencing plays a role as well, though to a smaller

16To see this, note that overdifferencing induces a moving average error with a unit root.
There does not exist a finite-lag, VAR representation for such a variable.
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extent.
The remainder of this section is divided into three parts. First, we consider the impact

of modeling hours in terms of levels or growth rates in our VAR system. We find that
under the hypothesis that the levels specification is the right one, then differencing hours
leads to an understatement of the employment response to a technology shock. We argue
on statistical grounds that the level specification of our VAR is more plausible than the
difference specification. The second subsection below shows how omitted variables can result
in a negative response of employment to a technology shock even when the true response
is positive. The third section considers subsample stability. The analysis throughout this
paper assumes the data are drawn from a single time series representation throughout the
sample. However, based on examining point estimates, Gali, Lopez-Salido, and Valles (2002)
argue that there has been a substantial break in the sample. We perform formal tests of
stability based on the approach in Christiano, Eichenbaum and Evans (1999) and tentatively
find that the evidence against stability is not persuasive.

3.4.1. Levels Versus Differences of Hours Worked

When we redo our analysis by replacing log hours in Yt with its first difference, then we
obtain results like those of Gali and Francis-Ramey. That is, we find that hours worked
decline after a positive monetary policy shock. The results are presented in Figure 7. The
lines indicated by x’s in each panel indicate our point estimates. Note how the response in
hours worked is negative for each of the 20 quarters of responses shown. For comparison,
the thick dark line in Figure 7 reproduce our baseline point estimates displayed in Figure
3 (we discuss the other lines momentarily). Under our assumption about hours worked,
the VAR estimated by Gali and Francis-Ramey is misspecified because hours worked are
over-differenced.
We investigated whether the decline in hours worked after a positive technology shock

could reflect distortions due to over-differencing. We find that it can. We determined this
by generating numerous samples of artificial data from our estimated VAR in which hours
appears in level form in Yt. In each artificial data sample, we fit a misspecified version of our
VAR in which hours worked appears in growth rate form. We then computed the impulse
responses to a technology shock. The mean impulse responses appear as the thin line in
Figure 7. The gray area represents the 95 confidence interval of the simulated impulse
response functions.17 The key thing to note is that hours worked on average declines in

17That is, for each lag we ordered the impulse responses from smallest to largest. The con-
fidence interval is defined by the interval from the 25th element in this ranking to the 975th

element (the number of data sets that were simulated is 1000.)

36



response to a positive technology shock in the simulated data. That is, our level specification
attributes the decline in hours in the estimated VAR with differenced hours data to over-
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differencing.

Figure 7 Response of Variables to Technology Shock
Data Generating Mechanism: VAR in Level of Hours
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We also did the reverse test: can the VAR with hours growth attribute the estimated rise
in hours in our benchmark model to some sort of distortion resulting from the fact that we
specified hours in levels? On a priori grounds, this possibility seems unlikely since specifying
hours in levels when it should have been in differences is not really a specification error,
as the VAR can accommodate differencing simply by incorporating a unit root. Still, we
are open to the possibility that small sample problems deriving from not imposing a unit
root when it is appropriate could account for our benchmark finding that hours rises after
a positive technology shock. The results of this investigation are reported in Figure 8. The
thick, solid line and the line composed of x’s reproduce the analogous lines from Figure 7
for convenience. The thin line in Figure 8 is the prediction of the VAR with hours in first
differences for the impulse responses one obtains with a VAR with hours in levels. The gray
area is the associated confidence interval. The notable thing about these results is that the
thin solid line is negative at all lags displayed. That is, the distortion from not imposing
the unit root is not large enough to account, on average, for the actual finding with our
estimated benchmark model that hours worked rises. At the same time, there is a wide
confidence interval about the thin line, which includes the thick, solid line. So, the difference
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results could explain our benchmark results as reflecting the effects of sampling uncertainty.

Figure 8: Response of Variables to Technology Shock
Data Generating Mechanism: VAR in First Difference of Hours
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We conclude this discussion by asking, which results are more plausible, the ones based
on differences in hours, which imply that employment drops persistently after a technology
shock, or the ones based on our benchmark results? We address this question by computing
the sort of posterior odds ratio computed in Christiano and Ljungqvist (1988) for a similar
situation where differences and levels of data lead to very different inferences about some
statistic. The basic idea is that the more plausible of the two VAR’s is the one that has the
easiest time explaining the facts: that the VAR in levels implies hours rises and the VAR in
differences implies hours falls, after a technology shock.
To proceed, it is convenient to summarize the findings for hours worked in the form of

a scalar statistic. We choose to work with the correlation between the 20-quarter ahead
forecast uncertainty in output and hours worked.18 Our benchmark levels VAR implies that
this correlation, ρL, is above 0.85, while the VAR in which hours worked appears in first
difference form implies this correlation, ρ∆L, is roughly −0.85. We simulated 1,000 artificial
data sets using each of our two estimated VARs as data generating mechanisms. In each
data set, we calculated (ρ∆L, ρL) using the same method used to compute these statistics in
the actual data.
The results are reported in Figures 9a and 9b. In each case, the header indicates the

underlying data generating mechanism. The horizontal axis corresponds to ρ∆L, while the
vertical axis corresponds to ρL. The red square indicates the empirical estimate of (ρ∆L, ρL),
(ρ̂∆L, ρ̂L). The yellow square indicates the average across artificial data sets, of (ρ∆L, ρL).
Each dot represents a realization of (ρ∆L, ρL) in artificial data generated by the VAR indi-
cated in the figure header.

18Let h and y denote the first 20 quarters’ response of log hours and log output, respectively,
to a technology shock. The correlation we studied is computed like this: (h0y) /

p
(h0h)(y0y).

41



Figure 9a: Figure 9b:
Correlations From Benchmark VAR Correlations From VAR with First-Differenced Hours
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In comparing the two figures, we see that Figure 9b assigns relatively more density to
the bottom left quadrant: the one in which both correlations are negative. The figures
suggest that the benchmark VAR has a relatively easier time explaining the observed values
of (ρ∆L, ρL), (ρ̂∆L, ρ̂L). To quantify this, the percent of artificial (ρ∆L, ρL)’s with ρ∆L < 0
and ρL > 0 is 48.8 in the artificial data generated by the benchmark VAR, while it is 35.7
for the VAR with first differenced hours. That is,

P (Q|A) = 0.49

P (Q|B) = 0.36,

where Q denotes the event, ρ∆L < 0 and ρL > 0, A indicates the benchmark model, B
indicates the VAR model with first differenced hours, and P denotes probability. Suppose
that our priors over A and B are equal: P (A) = P (B) = 1/2. The unconditional probability
of Q, P (Q), is 0.49× 0.5 + 0.36× 0.5 = 0.43. Probability of the two models, conditional on
having observed Q, is:

P (A|Q) =
P (A,Q)

P (Q)
=
P (Q|A)P (A)

P (Q)
= 0.57

P (B|Q) = 0.43.

So, we conclude that given the observations, the odds favor our benchmark model over the
model with first differenced hours by 1.3 to one. They favor the benchmark model slightly.
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Fundamentally, this is because the benchmark model has an easier time explaining (ρ̂∆L, ρ̂L)
than does the other model. On these purely statistical grounds we argue that the benchmark
model and its implications are more ‘plausible’ than those of the other VAR.

3.4.2. Omitted Variables Bias

We now investigate the consequences for estimating the response of employment to a tech-
nology shock, of working with a small VAR. To illustrate the possibilities, we study a four
variable VAR like the one analyzed by Gali, Lopez-Salido, and Valles (2002). The VAR
includes our measures of productivity growth, hours worked, the interest rate and inflation.
We estimate the four variable VAR over our sample period, 1959 - 2001, under two different
treatments of hours worked. In the first, we include the log level of hours worked. This
allows us to focus just on the consequences of omitting variables.19 In the second, we include
the first difference of log hours worked. This allows us to focus on the simultaneous conse-
quences of omitting variables and first differencing. In each case, we use the same long-run
restrictions used in the 9 variable analysis to identify technology shocks.20 The results are

19From the perspective of our benchmark VAR, the variables omitted are capacity utilization,
the real wage, consumption, investment and M2.
20We do not also impose on the 4-variable VAR the restrictions implied by our recursiveness

assumption on monetary policy. The literature on the dynamic effects of technology shocks does
not at the same time estimate the effects of monetary policy shocks, as we do here.
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reported in Figure 10:

Figure 10: Analysis of Two Versions of Four-Variable VAR
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In both panels of Figure 10, the thick solid line is our estimate of the response of hours
worked to a technology shock. This is simply taken from Figure 3. We now discuss the
top panel of the figure. Here, the line with x’s indicates the point estimates of the response
in hours worked to a technology shock, when the 4 variable VAR is estimated with hours
worked specified in levels. Note the implication of the point estimates that hours drop
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for about one year after a positive technology shock. The thin, continuous line in the
figure is the small sample expected value corresponding to the line with x’s, conditional on
our estimated 9 variable benchmark model being true. To obtain this expected value, we
simulated 1,000 artificial data sets from our estimated benchmark VAR. In each artificial
data set we performed the same set of calculations that produced the line marked with x’s.
That is, we fit the 4 variable VAR and used it to estimate the response of hours worked to a
technology shock. The thin line is the average impulse response across the 1,000 data sets.
The gray area is a 95% confidence interval about the thin line. According to our benchmark
model, hours in fact rise after a shock to technology (thick line) and the drop estimated in
the 4 variable VAR just reflects the effects of omitted variables bias.
Now consider the bottom panel in Figure 10. There are two lines with circles. The

lowest one at low lags is the estimated response of hours worked in the version of the four
variable VAR in which hours appear in first difference form. The other line with circles is
the expected value of the estimates, conditional on our benchmark model being true. The
gray area is the associated 95 % confidence intervals. There are two things of interest here.
First, as in the top panel of Figure 10, according to the benchmark model the estimated
decline in hours worked implied by the 4 variable system reflects distortions. The actual
response in the simulations is positive (thick line). Second, the magnitude of the distortions
is substantially larger in the right panel than in the left, consistent with the notion that
omitted variables and overdifferencing both drive the estimated response of hours worked
down. Our estimates suggest that the bias at lag 0 due to omitted variables is about 0.3
percentage points. Distortions due to overdifferencing add another 0.1 percentage point, or
so. After a lag of a few quarters, the distortions are substantially larger.

3.4.3. Subsample Stability

A recent paper by Gali, Lopez-Salido, and Valles (2002) shows that estimated impulse re-
sponse functions change substantially between the pre-Volcker and post Volcker-Greenspan
sample periods. To see this, consider results in Figure 11, which are based on the 4-variable
VAR with hours specified in first differences. First, for convenience each panel in this figure
reproduces the response of employment to a technology shock estimated from our benchmark
system. In addition, each figure has a line with x’s, which indicates point estimates obtained
using the 4-variable system. The left panel reports results for the pre-Volcker period and the
right panel presents results for the post-Volcker period. Finally, the solid line in the middle
of the gray area is the average impulse response function for the indicated sample, implied
by 1,000 simulations of our benchmark VAR. It is what our benchmark VAR predicts will
happen in the indicated subsample, when the 4 variable system is estimated. The gray area
is the associated 95% confidence interval.
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There are two things worth noting in these figures. There is indeed a substantial change
in the estimated impulse response function. Between pre- and post- Volcker periods, the
impulse response functions switch from negative to positive. However, the gray area is quite
wide and the change in parameters is at best marginally significant. Moreover, note that the
difficulty we have comes from a surge in employment in the late period. In the early period
the decline in employment is fully consistent with the hypothesis of omitted variable bias
and the idea that employment actually rises.

Figure 11: Analysis of Results for the 4-Variable VAR With Hours in First Differences
Figure 11a: Pre-Volcker - 1959-1979 Figure 11b: Post-Volcker - 1983-2001
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We conclude that the evidence of subsample instability is at best marginal.21 More-
over, whatever evidence of instability there is does not appear to pose a challenge to the
proposition, incorporated in our benchmark VAR, that employment responds positively to
a technology shock. Our analysis is not yet fully complete, and we still need to perform a
stability test for our benchmark model. This is currently underway.

21We also performed the test underlying those in Figure 11 using the full-sample estimated
4-variable VAR as the data generating mechanism. This procedure did not even find marginal
evidence against stability. In addition, we repeated the analysis for the 4- variable VAR specified
in terms of the level of hours. Here, there was not even much instability in terms of point
estimates.
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4. Results

This section reports our parameter estimates and diagnoses model fit by evaluating how well
the model’s impulse responses match those estimated in the data.
We divide the parameters into those whose values are estimated here and those whose

values are taken from elsewhere. The latter are reported in Table 1. For the most part,
the values used are standard. The parameter governing market power of household labor
suppliers, λw, is arbitrarily set to 1.05. In future drafts, we plan to include this parameter
in the list of parameters to be estimated.

Table 1: Parameters that Do Not
Enter Formal Estimation Criterion

discount factor β 1.03−.25

capital’s share α 0.36
capital depreciation rate δ 0.025
markup, labor suppliers λw 1.05
mean, money growth µ 1.017

labor utility parameter ψ0
set to imply
L = 1

real balance utility parameter ψq
set to imply
Q/M = 0.44

fixed cost of production φ
set to imply
steady state profits = 0

The 13 model parameters that we estimate here are:

γ ≡ (λf , ξw, ξp,σq, S
00, b,σa,

6 parameters governing exogenous shocks).

As a reminder, λf ≥ 1 is the markup set by monopolist intermediate good suppliers, ξw is the
probability that a household cannot reoptimize the wage for its differentiated labor service,
ξp is the probability that the monopoly supplier of a differentiated intermediate good cannot
reoptimize its price, σq is a curvature parameter related to money demand, S

00 is a curvature
parameter related to adjustment costs on investment, b is the habit parameter, and σa is the
parameter controlling the curvature on costs of capital utilization. The list of ‘parameters
governing monetary policy and technology’ are simply the parameters in () and (2.3).
Corresponding to each γ, we compute a set of model impulse response functions, ψ(γ).

Denote the impulse response functions for the data by ψ̂. This is the list of numbers reported
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in Figures 2 and 3.22 We have not yet implemented our procedure for also estimating the
other shocks.23 So, the vector, ψ̂, summarizes the first 20 lags in the response function of our
9 variables to technology and monetary policy. Our estimator of γ minimizes the distance
between ψ(γ) and ψ̂:

γ̂ = argmin
γ
(ψ̂ − ψ(γ))0V −1(ψ̂ − ψ(γ)),

where V is the diagonal matrix composed of our estimate of the sample standard deviation
in ψ̂. Essentially, our estimation procedure tries to get the model’s impulse responses as close
to the thick line in Figure 2 and 3. It pays most attention to impulses were the gray area
is the thinnest. We computed standard errors for the estimated values of γ using the usual
delta function method.
The results are reported in the following two tables. Table 2 reports the values of the

economic parameters, while results for the parameters of the exogenous shock processes are
reported in Table 3.

22There are 360-6 elements in ψ̂ : nine variables, 20 lags and 2 shocks. We subtract 6 from
the total to take into account the 6 variables whose contemporaneous responses to a monetary
policy shock are assumed to be zero under our identifying assumptions.
23We do have some intriguing, preliminary results. With model-based estimation, a subset

of the elements of ψ̂ is a function of unknown parameters: the elements of the 6 dimensional
orthonormal matrix, w, discussed in section 3.2.2. We began model-based identification, by
working with one shock in e1t alone. We interpreted the first element of e1t as the shock to the
preference for leisure (or, to labor market power). The only part of w that is relevant for this is
w1, the first column (so, the only restriction to implement is that the length of w1 be unity). Let

the subset of ψ̂ that corresponds to the dynamic response to a leisure shock be denoted ψ̂0(w1).
We attempted to estimate ψ̂0(w1) by minimizing its distance from the corresponding part of
ψ(γ), which we denote by ψ0(γ). Regardless of starting values, the estimation procedure always
chose w1 and the variance of the preference shock in the model to make ψ̂

0(w1) and ψ0(γ) close
to zero.
We conjecture that this finding reflects a problem with estimating just one element in a list

of several shocks, by our model-based approach. To see the problem, recall the finding in the
existing literature on dynamic factor analysis, which suggests that a small number of shocks
account for a large amount of the variation in the data. A corollary of this is that a large number
of shocks explain very little. Apparently, our model-based procedure, when applied to only one
shock out of potentially several, undertakes a ‘race to the bottom’, by choosing w1 to produce
the shock with least variance. In effect, the distance between ψ̂0(w1) and ψ0(γ) is minimized
by setting each close to zero (setting ψ̂0(w1) exactly to zero is impossible, since that would be
inconsistent with Yt having full rank). We suspect that rather than just estimating one shock
among the six, one of two alternative courses of action must be followed. Either estimate six
shocks, or compute the principle component shocks and if one wants to estimate x < 6 shocks,
do so using the x principle component shocks as a basis.
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We divide our discussion into three parts. We begin with the benchmark estimation
results, in which γ is chosen to make the model match all the impulses simultaneously. To
gain an understanding for the role played by impulse responses to technology and to policy
in the results, we perform two other analyses. First, we re-estimate γ by including only
responses to policy shocks in the estimation. Then, we re-estimate γ by including only
responses to technology shocks. In each of these two cases, we must delete from γ the
components pertaining to the impulses not included.

4.1. Benchmark Results

We now turn to the benchmark estimation. The first row of Table 2 exhibits the resulting
model parameter values. Our impression is that these are all reasonable. The estimated
value of λf implies a steady state markup of 14 percent. The estimated value of ξw implies
that wage contracts last on average a little over 4 quarters, while the estimated value of ξp
implies that price contracts last a little under 2 quarters. By comparison with existing survey
evidence on the degree of sticky wages and prices, our estimated amount of stickiness is quite
modest. The habit parameter, b, is very similar to the value used in Boldrin, Christiano and
Fisher (2001), using a non-monetary version of the model here, to match basic asset pricing
facts such as the equity premium.

Table 2: Estimated Economic Parameter Values (Standard Errors)
Estimation Based Estimated Responses to: λf ξw ξp σq S00 b σa
Policy and Technology Shocks
Simultaneously

1.14
(.016)

.78
(0.04)

.42
(0.12)

14.13
(1.74)

7.69
(1.33)

0.73
(0.07)

0.05
(0.01)

Policy Shocks Only 1.15
(0.27)

0.73
(0.03)

0.45
(0.06)

12.33
(0.61)

9.97
(3.36)

0.77
(0.04)

0.03
(0.01)

Technology Shocks Only 1.65 0.99 0.08 18.67 20.00 0.60 0.02

The estimated parameters of the exogenous shocks for the benchmark run are reported in
the first column of Table 3. The first order autocorrelation of the growth rate of technology
is estimated to be 0.80. The standard deviation of the innovation is 0.12 percent. This
corresponds to an overall unconditional standard deviation of 0.2 percent for the growth
rate of technology. These results differ somewhat from Prescott (1986), who estimates the
properties of the technology shock process using the Solow residual. He finds the shock is
roughly a random walk and its growth rate has a standard deviation of roughly 1 percent.24

Our results are potentially consistent with Prescott’s findings, for three reasons. First, we

24Prescott (1986) actually reports a standard deviation of 0.763 percent. However, he adopts
a different normalization for the technology shock than we do, by placing it in front of the
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model technology shocks as having two components, a temporary one and a permanent one.
The analysis up to now has only included the permanent one. Second, from the perspective
of our model, Prescott’s estimate of technology confounds technology with variable capital
utilization. Both these factors may explain why our technology shock standard deviation is
one-fifth the size of Prescott’s. They may also explain why we find so much more persistence.
A more conclusive finding on this dimension awaits our analysis of the model with the
additional shocks.
According to the estimates in Table 3, monetary policy responds immediately to a positive

realization of the technology shock. For every one percent innovation in technology, the
money stock jumps by 2 percent, according to the point estimates. At the same time, the
standard error on this parameter is estimated particularly imprecisely, with a standard error
of 1.17. The autoregressive parameter on the response of money to technology indicates that
money growth increases not just in the period of a technology shock, but jumps again in the
period afterward.
We now consider the results in Table 3 pertaining to monetary policy shocks. These

indicate that a monetary policy shock drives up the money stock by 0.11 percent, with an
extremely tight standard error. The increase in money growth is autocorrelated over time.

Table 3: Estimated Parameters of Exogenous Shock Processes
Estimation Based on Estimated Responses to:

Policy and Technology Policy Technology
Parameter Shocks Simultaneously Shocks Only Shocks Only

ρx 0.80 (0.11) na 0.92
σεx 0.12 (0.06) na 0.05
ρµx 0.47 (0.10) na 0.29
cµx 2.07 (1.17) na 3.59
ρµp 0.27 (0.07) 0.27 (0.10) na
σεµp 0.11 (0.005) 0.13 (0.01) na

Figures 12 and 13 display the dynamic response of the model variables (see the continuous
lines) at the estimated parameter values. The period of the shock is indicated by a ‘*’. For
convenience, we have included the empirical impulse responses (see the lines marked by ‘+’)
and 95% confidence intervals (see the grey areas) estimated in the data and reported in

production function. Instead, our technology shock multiplies labor directly in the production
and is taken to a power of labor’s share. The value of labor’s share that Prescott uses is 0.70.
When we translate Prescott’s estimate into the one relevant for our normalization, we obtain
0.763/.7 ≈ 1.
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Figures 2 and 3. In our view, the fit is very good. The response of capital utilization is
slightly weak, though still inside the confidence intervals everywhere. Velocity misses the
confidence interval very slightly in the period after the shock.

Figure 12: Properties of Benchmark Estimated Model - Dynamic Response to Monetary Policy Shoc
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Now consider the responses to a technology shock, reported in Figure 13. Here too the
model mimics the impulse responses in the data reasonably well. However, it is easier to
find fault with the model in Figure 13 than it is in to do so in Figure 12. Inflation in the
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model does not quite fall enough, and the response in capital utilization, labor and output
is somewhat on the weak side. Finally, the response of money growth is too strong.

Figure 13: Properties of Benchmark Estimated Model - Dynamic Response to Technology Shock
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Figure 2: Model and Data Impulse Response Functions to a Non-stationary Technology Shock
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To better understand the reasons for these estimation results, we turn to estimation based
on only policy and technology shocks, in the next two subsections.
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4.2. Estimation Based on Policy Shocks Alone

We can obtain insight into what is driving the results by considering what happens when
model parameters are estimated using only the impulse responses to a monetary policy shock.
For this experiment, the parameters governing the univariate representation of the technology
shock and the parameters governing the response of monetary policy to technology were held
fixed at the benchmark estimates. A notable feature of the results, is that there is little
difference. For example, the estimated parameter values in Tables 2 and 3 are very similar
for the benchmark run, and the run pursued here. In terms of the responses to a policy
shock, the improvements are nearly imperceptible. Similarly, in terms of the response to
technology shocks, the deterioration in the performance of the model is quite small. This
can be seen by comparing the results in Figure 15 with those in Figure 13. It appears that
the benchmark estimation results have been driven by the empirical estimates to a monetary
policy shock, and that those estimates work reasonably well for the response of technology
shocks too.
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Figure 14: Properties of Model Fit to Policy Impulse Responses Only
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Figure 15: Properties of Model Fit to Policy Impulse Responses Only
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Figure 2: Model and Data Impulse Response Functions to a Non-stationary Technology Shock
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4.3. Estimation Based on Technology Shocks Alone

We now turn to the results based on estimating the model on technology shocks alone.
These results are quite different from our benchmark findings. Table 2 reports the new
parameter values. Stickiness in prices has been almost completely eliminated, while the
degree of stickiness in wages has moved to its upper bound of 0.99. Adjustment costs in
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investment and the degree of market power of intermediate good producers have increased
substantially.25 According to Table 3, the standard deviation of the technology shock was
cut in half, and the response of money to technology was increased from about 2 to about 3.
Figures 16 and 17 indicate what the consequences of these new parameter values are.

Figure 17 shows that the new parameters correct the main failures of the benchmark model
in reproducing the dynamic responses to technology. However, these improvements come at
great cost in terms of being able to fit the dynamic response to a monetary policy shock. The
effect of the shock on inflation in the first 20 quarters is now completely dominated by cut
in the interest rate. With the fall in prices and the rise in nominal demand, labor, capital
utilization, consumption, investment and output surge. In the case of output and labor,
the increase is far too great. The enormous stickiness in the nominal wage rate relative to
intermediate good prices implies that the real wage stays low.
In a later draft we will more fully diagnose the implications of these model results.

For now, we note that these results confirm the conclusion of the previous subsection: the
benchmark results are principally driven by the empirical responses to monetary policy. It
is interesting that the monetary policy shock, which has so little impact on the dynamics of
the data, plays such an important role in pinning down model parameters.

25Standard errors have not yet been computed for these parameter values.
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Figure 16: Properties of Model Fit to Technology Impulse Responses Only
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Figure 17: Properties of Model Fit to Technology Impulse Responses Only
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5. Conclusion

[to be added later]
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